10,173 research outputs found

    Domain-Specific Acceleration and Auto-Parallelization of Legacy Scientific Code in FORTRAN 77 using Source-to-Source Compilation

    Get PDF
    Massively parallel accelerators such as GPGPUs, manycores and FPGAs represent a powerful and affordable tool for scientists who look to speed up simulations of complex systems. However, porting code to such devices requires a detailed understanding of heterogeneous programming tools and effective strategies for parallelization. In this paper we present a source to source compilation approach with whole-program analysis to automatically transform single-threaded FORTRAN 77 legacy code into OpenCL-accelerated programs with parallelized kernels. The main contributions of our work are: (1) whole-source refactoring to allow any subroutine in the code to be offloaded to an accelerator. (2) Minimization of the data transfer between the host and the accelerator by eliminating redundant transfers. (3) Pragmatic auto-parallelization of the code to be offloaded to the accelerator by identification of parallelizable maps and reductions. We have validated the code transformation performance of the compiler on the NIST FORTRAN 78 test suite and several real-world codes: the Large Eddy Simulator for Urban Flows, a high-resolution turbulent flow model; the shallow water component of the ocean model Gmodel; the Linear Baroclinic Model, an atmospheric climate model and Flexpart-WRF, a particle dispersion simulator. The automatic parallelization component has been tested on as 2-D Shallow Water model (2DSW) and on the Large Eddy Simulator for Urban Flows (UFLES) and produces a complete OpenCL-enabled code base. The fully OpenCL-accelerated versions of the 2DSW and the UFLES are resp. 9x and 20x faster on GPU than the original code on CPU, in both cases this is the same performance as manually ported code.Comment: 12 pages, 5 figures, submitted to "Computers and Fluids" as full paper from ParCFD conference entr

    The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench for Future (C)LP Systems

    Full text link
    CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin
    corecore