9,767 research outputs found

    Automatic alignment for three-dimensional tomographic reconstruction

    Get PDF
    In tomographic reconstruction, the goal is to reconstruct an unknown object from a collection of line integrals. Given a complete sampling of such line integrals for various angles and directions, explicit inverse formulas exist to reconstruct the object. Given noisy and incomplete measurements, the inverse problem is typically solved through a regularized least-squares approach. A challenge for both approaches is that in practice the exact directions and offsets of the x-rays are only known approximately due to, e.g. calibration errors. Such errors lead to artifacts in the reconstructed image. In the case of sufficient sampling and geometrically simple misalignment, the measurements can be corrected by exploiting so-called consistency conditions. In other cases, such conditions may not apply and we have to solve an additional inverse problem to retrieve the angles and shifts. In this paper we propose a general algorithmic framework for retrieving these parameters in conjunction with an algebraic reconstruction technique. The proposed approach is illustrated by numerical examples for both simulated data and an electron tomography dataset

    Convolutional Dictionary Regularizers for Tomographic Inversion

    Full text link
    There has been a growing interest in the use of data-driven regularizers to solve inverse problems associated with computational imaging systems. The convolutional sparse representation model has recently gained attention, driven by the development of fast algorithms for solving the dictionary learning and sparse coding problems for sufficiently large images and data sets. Nevertheless, this model has seen very limited application to tomographic reconstruction problems. In this paper, we present a model-based tomographic reconstruction algorithm using a learnt convolutional dictionary as a regularizer. The key contribution is the use of a data-dependent weighting scheme for the l1 regularization to construct an effective denoising method that is integrated into the inversion using the Plug-and-Play reconstruction framework. Using simulated data sets we demonstrate that our approach can improve performance over traditional regularizers based on a Markov random field model and a patch-based sparse representation model for sparse and limited-view tomographic data sets

    GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging

    Get PDF
    Tomography has made a radical impact on diverse fields ranging from the study of 3D atomic arrangements in matter to the study of human health in medicine. Despite its very diverse applications, the core of tomography remains the same, that is, a mathematical method must be implemented to reconstruct the 3D structure of an object from a number of 2D projections. In many scientific applications, however, the number of projections that can be measured is limited due to geometric constraints, tolerable radiation dose and/or acquisition speed. Thus it becomes an important problem to obtain the best-possible reconstruction from a limited number of projections. Here, we present the mathematical implementation of a tomographic algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE). By iterating between real and reciprocal space, GENFIRE searches for a global solution that is concurrently consistent with the measured data and general physical constraints. The algorithm requires minimal human intervention and also incorporates angular refinement to reduce the tilt angle error. We demonstrate that GENFIRE can produce superior results relative to several other popular tomographic reconstruction techniques by numerical simulations, and by experimentally by reconstructing the 3D structure of a porous material and a frozen-hydrated marine cyanobacterium. Equipped with a graphical user interface, GENFIRE is freely available from our website and is expected to find broad applications across different disciplines.Comment: 18 pages, 6 figure

    High Angular Resolution Stellar Imaging with Occultations from the Cassini Spacecraft II: Kronocyclic Tomography

    Full text link
    We present an advance in the use of Cassini observations of stellar occultations by the rings of Saturn for stellar studies. Stewart et al. (2013) demonstrated the potential use of such observations for measuring stellar angular diameters. Here, we use these same observations, and tomographic imaging reconstruction techniques, to produce two dimensional images of complex stellar systems. We detail the determination of the basic observational reference frame. A technique for recovering model-independent brightness profiles for data from each occulting edge is discussed, along with the tomographic combination of these profiles to build an image of the source star. Finally we demonstrate the technique with recovered images of the {\alpha} Centauri binary system and the circumstellar environment of the evolved late-type giant star, Mira.Comment: 8 pages, 8 figures, Accepted by MNRA
    • …
    corecore