36,565 research outputs found

    Effective Field Theory Methods in Gravitational Physics and Tests of Gravity

    Full text link
    In this PhD thesis I make use of the "Effective Field Theory of Gravity for Extended Objects" by Goldberger and Rothstein in order to investigate theories of gravity and to take a different point of view on the physical information that can be extracted from experiments. In the first work I present, I study a scalar-tensor theory of gravity and I address the renormalization of the energy-momentum tensor for point-like and string-like sources. The second and third study I report are set in the context of testing gravity. So far experiments have probed dynamical regimes only up to order (v/c)^5 in the post-Newtonian expansion, which corresponds to the very first term of the radiative sector in General Relativity. In contrast, by means of gravitational-wave astronomy, one aims at testing General Relativity up to (v/c)^(12)! It is then relevant to envisage testing frameworks which are appropriate to this strong-field/radiative regime. In the last two chapters of this thesis a new such framework is presented. Using the effective field theory approach, General Relativity non-linearities are described by Feynman diagrams in which classical gravitons interact with matter sources and among themselves. Tagging the self-interaction vertices of gravitons with parameters it is possible, for example, to translate the measure of the period decay of Hulse-Taylor pulsar in a constraint on the three-graviton vertex at the 0.1% level; for comparison, LEP constraints on the triple-gauge-boson couplings of weak interactions are accurate at 3%. With future observations of gravitational waves, higher order graviton vertices can in principle be constrained through a Fisher matrix analysis.Comment: This PhD Thesis has been conducted at the University of Geneva (Switzerland) under the direction of Professor Michele Maggiore and the codirection of Doctor Riccardo Sturani. Version 2: abstract slightly changed; one typo corrected; layout issue fixe

    Constraining nonperturbative strong-field effects in scalar-tensor gravity by combining pulsar timing and laser-interferometer gravitational-wave detectors

    Full text link
    Pulsar timing and gravitational-wave (GW) detectors are superb laboratories to study gravity theories in the strong-field regime. Here we combine those tools to test the mono-scalar-tensor theory of Damour and Esposito-Far{\`e}se (DEF), which predicts nonperturbative scalarization phenomena for neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs) for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical) scalarization sets in during the early (or late) stages of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.Comment: 19 pages, 11 figures; accepted by Physical Review

    Measuring information-transfer delays

    Get PDF
    In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only relevant option in keeping with Wiener’s principle of causality. We demonstrate the performance of our approach in detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields dealing with network dynamics

    Measuring the parameters of massive black hole binary systems with Pulsar Timing Array observations of gravitational waves

    Full text link
    The observation of massive black hole binaries (MBHBs) with Pulsar Timing Arrays (PTAs) is one of the goals of gravitational wave astronomy in the coming years. Massive (>10^8 solar masses) and low-redshift (< 1.5) sources are expected to be individually resolved by up-coming PTAs, and our ability to use them as astrophysical probes will depend on the accuracy with which their parameters can be measured. In this paper we estimate the precision of such measurements using the Fisher-information-matrix formalism. We restrict to "monochromatic" sources. In this approximation, the system is described by seven parameters and we determine their expected statistical errors as a function of the number of pulsars in the array, the array sky coverage, and the signal-to-noise ratio (SNR) of the signal. At fixed SNR, the gravitational wave astronomy capability of a PTA is achieved with ~20 pulsars; adding more pulsars (up to 1000) to the array reduces the source error-box in the sky \Delta\Omega by a factor ~5 and has negligible consequences on the statistical errors on the other parameters. \Delta\Omega improves as 1/SNR^2 and the other parameters as 1/SNR. For a fiducial PTA of 100 pulsars uniformly distributed in the sky and a coherent SNR = 10, we find \Delta\Omega~40 deg^2, a fractional error on the signal amplitude of ~30% (which constraints only very poorly the chirp mass - luminosity distance combination M_c^{5/3}/D_L), and the source inclination and polarization angles are recovered at the ~0.3 rad level. The ongoing Parkes PTA is particularly sensitive to systems located in the southern hemisphere, where at SNR = 10 the source position can be determined with \Delta\Omega ~10 deg^2, but has poorer performance for sources in the northern hemisphere. (Abridged)Comment: 20 pages, 12 figures, 2 color figures, submitted to Phys. Rev.

    Unveiling the Dynamics of the Universe

    Full text link
    We explore the dynamics and evolution of the Universe at early and late times, focusing on both dark energy and extended gravity models and their astrophysical and cosmological consequences. Modified theories of gravity not only provide an alternative explanation for the recent expansion history of the universe, but they also offer a paradigm fundamentally distinct from the simplest dark energy models of cosmic acceleration. In this review, we perform a detailed theoretical and phenomenological analysis of different modified gravity models and investigate their consistency. We also consider the cosmological implications of well motivated physical models of the early universe with a particular emphasis on inflation and topological defects. Astrophysical and cosmological tests over a wide range of scales, from the solar system to the observable horizon, severely restrict the allowed models of the Universe. Here, we review several observational probes -- including gravitational lensing, galaxy clusters, cosmic microwave background temperature and polarization, supernova and baryon acoustic oscillations measurements -- and their relevance in constraining our cosmological description of the Universe.Comment: 94 pages, 14 figures. Review paper accepted for publication in a Special Issue of Symmetry. "Symmetry: Feature Papers 2016". V2: Matches published version, now 79 pages (new format

    Probing the physical and mathematical structure of f(R)f(R) gravity by PSR J0348+0432J0348+0432

    Full text link
    There are several approaches to extend General Relativity in order to explain the phenomena related to the Dark Matter and Dark Energy. These theories, generally called Extended Theories of Gravity, can be tested using observations coming from relativistic binary systems as PSR J0348+0432J0348+0432. Using a class of analytical f(R)f(R)-theories, one can construct the first time derivative of orbital period of the binary systems starting from a quadrupolar gravitational emission. Our aim is to set boundaries on the parameters of the theory in order to understand if they are ruled out, or not, by the observations on PSR J0348+0432J0348+0432. Finally, we have computed an upper limit on the graviton mass showing that agree with constraint coming from other observations.Comment: 6 pages, 1 figure, accepted in International Journal of Geometric Methods in Modern Physic
    • …
    corecore