23 research outputs found

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    Energy aware routing protocols in ad hoc wireless networks

    Get PDF
    In Mobile Ad hoc Network, communication at mobile nodes can be achieved by using multi-hop wireless links. The architecture of such a network is based, not on a centralized base station but on each node acting as a router to forward data packets to other nodes in the network. The aim of each protocol, in an ad hoc network, is to find valid routes between two communicating nodes. These protocols must be able to handle high mobility of the nodes which often cause changes in the network topology. Every ad hoc network protocol uses some form of a routing algorithm to transmit between nodes based on a mechanism that forwards packets from one node to another in the network. These algorithms have their own way of finding a new route or modifying an existing one when there are changes in the network. The novel area of this research is a proposed routing algorithm which improves routing and limits redundant packet forwarding, especially in dense networks. It reduces the routing messages and consequently power consumption, which increases the average remaining power and the lifetime of the network. The first aim of this research was to evaluate various routing algorithms in terms of power. The next step was to modify an existing ad hoc routing protocol in order to improve the power consumption. This resulted in the implementation of a dynamic probabilistic algorithm in the route request mechanism of an ad hoc On-Demand Distance Vector protocol which led to a 3.0% improvement in energy consumption. A further extension of the approach using Bayesian theory led to 3.3% improvement in terms of energy consumption as a consequence of a reduction in MAC Load for all network sizes, up to 100 nodes.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Design and implementation of architectures for the deployment of secure community wireless networks

    Full text link
    Recientes avances en las tecnologías de la comunicación, así como la proliferación de nuevos dispositivos de computación, están plasmando nuestro entorno hacia un Internet ubicuo. Internet ofrece una plataforma global para acceder con bajo coste a una vasta gama de servicios de telecomunicaciones, como el correo electrónico, comercio electrónico, tele-educación, tele-salud y tele-medicina a bajo coste. Sin embargo, incluso en los países más desarrollados, un gran número de áreas rurales todavía están pobremente equipadas con una infraestructura básica de telecomunicaciones. Hoy en día, existen algunos esfuerzos para resolver esta falta de infraestructura, pero resultan todavía insuficientes. Con este objetivo presentamos en esta tesis RuralNet, una red comunitaria inalámbrica para proveer acceso a Internet de forma personalizada a los subscriptores de un área rural. Los objetivos de este estudio han sido el desarrollo de una nueva arquitectura para ofrecer un acceso a Internet flexible y seguro para zonas rurales aisladas. RuralNet combina el paradigma de las redes mesh y el uso de los dispositivos inalámbricos embebidos más económicos para ofrecer un gran número de servicios y aplicaciones basados en Internet. La solución desarrollada por RuralNet es capaz de cubrir grandes áreas a bajo coste, y puede también ser fácilmente desplegado y extendido tanto en términos de cobertura como de servicios ofrecidos. Dado que la implementación y la evaluación de RuralNet requiere un alto coste y una gran cantidad de mano de obra, hemos considerado que la simulación y la emulación eran una alternativa válida para ahorrar costes. Con este objetivo hemos desarrollado Castadiva, un emulador flexible proyectado para la evaluación de redes MANET y mesh. Castadiva es un emulador basado en dispositivos de bajo coste, utilizado para evaluar los protocolos y las aplicaciones desarrolladas.Hortelano Otero, J. (2011). Design and implementation of architectures for the deployment of secure community wireless networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10079Palanci

    Analysis of the security and reliability of packet transmission in Wireless Mesh Networks (WMNs) : a case study of Malicious Packet drop attack

    Get PDF
    Wireless Mesh Networks (WMNs) are known for possessing good attributes such as low up-front cost, easy network maintenance, and reliable service coverage. This has largely made them to be adopted in various areas such as; school campus networks, community networking, pervasive healthcare, office and home automation, emergency rescue operations and ubiquitous wireless networks. The routing nodes are equipped with self-organized and self-configuring capabilities. The routing mechanisms of WMNs depend on the collaboration of all participating nodes for reliable network performance. However, it has been noted that most routing algorithms proposed for WMNs in the last few years are designed with the assumption that all the participating nodes will collaboratively be involved in relaying the data packets originated from a source to a multi-hop destination. Such design approach exposes WMNs to vulnerability such as malicious packet drop attack. Therefore, it is imperative to design and implement secure and reliable packet routing mechanisms to mitigate this type of attack. While there are works that have attempted to implement secure routing approach, the findings in this research unearthed that further research works are required to improve the existing secure routing in order to provide more secure and reliable packet transmission in WMNs, in the event of denial of service (DoS) attacks such black hole malicious pack drop attack. This study further presents an analysis of the impact of the black hole malicious packet drop attack with other influential factors in WMNs. In the study, NS-3 simulator was used with AODV as the routing protocol. The results show that the packet delivery ratio and throughput of WMN under attack decreases sharply as compared to WMN free from attack
    corecore