10,787 research outputs found

    Statistical-Mechanical Measure of Stochastic Spiking Coherence in A Population of Inhibitory Subthreshold Neurons

    Full text link
    By varying the noise intensity, we study stochastic spiking coherence (i.e., collective coherence between noise-induced neural spikings) in an inhibitory population of subthreshold neurons (which cannot fire spontaneously without noise). This stochastic spiking coherence may be well visualized in the raster plot of neural spikes. For a coherent case, partially-occupied "stripes" (composed of spikes and indicating collective coherence) are formed in the raster plot. This partial occupation occurs due to "stochastic spike skipping" which is well shown in the multi-peaked interspike interval histogram. The main purpose of our work is to quantitatively measure the degree of stochastic spiking coherence seen in the raster plot. We introduce a new spike-based coherence measure MsM_s by considering the occupation pattern and the pacing pattern of spikes in the stripes. In particular, the pacing degree between spikes is determined in a statistical-mechanical way by quantifying the average contribution of (microscopic) individual spikes to the (macroscopic) ensemble-averaged global potential. This "statistical-mechanical" measure MsM_s is in contrast to the conventional measures such as the "thermodynamic" order parameter (which concerns the time-averaged fluctuations of the macroscopic global potential), the "microscopic" correlation-based measure (based on the cross-correlation between the microscopic individual potentials), and the measures of precise spike timing (based on the peri-stimulus time histogram). In terms of MsM_s, we quantitatively characterize the stochastic spiking coherence, and find that MsM_s reflects the degree of collective spiking coherence seen in the raster plot very well. Hence, the "statistical-mechanical" spike-based measure MsM_s may be used usefully to quantify the degree of stochastic spiking coherence in a statistical-mechanical way.Comment: 16 pages, 5 figures, to appear in the J. Comput. Neurosc

    Nonlinear System Identification of Neural Systems from Neurophysiological Signals

    Get PDF
    The human nervous system is one of the most complicated systems in nature. Complex nonlinear behaviours have been shown from the single neuron level to the system level. For decades, linear connectivity analysis methods, such as correlation, coherence and Granger causality, have been extensively used to assess the neural connectivities and input-output interconnections in neural systems. Recent studies indicate that these linear methods can only capture a small amount of neural activities and functional relationships, and therefore cannot describe neural behaviours in a precise or complete way. In this review, we highlight recent advances in nonlinear system identification of neural systems, corresponding time and frequency domain analysis, and novel neural connectivity measures based on nonlinear system identification techniques. We argue that nonlinear modelling and analysis are necessary to study neuronal processing and signal transfer in neural systems quantitatively. These approaches can hopefully provide new insights to advance our understanding of neurophysiological mechanisms underlying neural functions. These nonlinear approaches also have the potential to produce sensitive biomarkers to facilitate the development of precision diagnostic tools for evaluating neurological disorders and the effects of targeted intervention

    Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends

    Get PDF
    Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks

    Phase Synchronization Operator for On-Chip Brain Functional Connectivity Computation

    Get PDF
    This paper presents an integer-based digital processor for the calculation of phase synchronization between two neural signals. It is based on the measurement of time periods between two consecutive minima. The simplicity of the approach allows for the use of elementary digital blocks, such as registers, counters, and adders. The processor, fabricated in a 0.18- μ m CMOS process, only occupies 0.05 mm 2 and consumes 15 nW from a 0.5 V supply voltage at a signal input rate of 1024 S/s. These low-area and low-power features make the proposed processor a valuable computing element in closed-loop neural prosthesis for the treatment of neural disorders, such as epilepsy, or for assessing the patterns of correlated activity in neural assemblies through the evaluation of functional connectivity maps.Ministerio de Economía y Competitividad TEC2016-80923-POffice of Naval Research (USA) N00014-19-1-215

    Magnetoencephalography as a tool in psychiatric research: current status and perspective

    Get PDF
    The application of neuroimaging to provide mechanistic insights into circuit dysfunctions in major psychiatric conditions and the development of biomarkers are core challenges in current psychiatric research. In this review, we propose that recent technological and analytic advances in Magnetoencephalography (MEG), a technique which allows the measurement of neuronal events directly and non-invasively with millisecond resolution, provides novel opportunities to address these fundamental questions. Because of its potential in delineating normal and abnormal brain dynamics, we propose that MEG provides a crucial tool to advance our understanding of pathophysiological mechanisms of major neuropsychiatric conditions, such as Schizophrenia, Autism Spectrum Disorders, and the dementias. In our paper, we summarize the mechanisms underlying the generation of MEG signals and the tools available to reconstruct generators and underlying networks using advanced source-reconstruction techniques. We then survey recent studies that have utilized MEG to examine aberrant rhythmic activity in neuropsychiatric disorders. This is followed by links with preclinical research, which have highlighted possible neurobiological mechanisms, such as disturbances in excitation/inhibition parameters, which could account for measured changes in neural oscillations. In the final section of the paper, challenges as well as novel methodological developments are discussed which could pave the way for a widespread application of MEG in translational research with the aim of developing biomarkers for early detection and diagnosis

    Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordDegree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration/segregation capability.The work presented in this paper was supported by FP7 EU funded MICHELANGELO project, Grant Agreement #288241. Website: www.michelangelo-project.eu/
    corecore