7,658 research outputs found

    Two-choice regulation in heterogeneous closed networks

    Full text link
    A heterogeneous closed network with one-server queues with finite capacity and one infinite-server queue is studied. A target application is bike-sharing systems. Heterogeneity is taken into account through clusters whose queues have the same parameters. Incentives to the customer to go to the least loaded one-server queue among two chosen within a cluster are investigated. By mean-field arguments, the limiting queue length stationary distribution as the number of queues gets large is analytically tractable. Moreover, when all customers follow incentives, the probability that a queue is empty or full is approximated. Sizing the system to improve performance is reachable under this policy.Comment: 19 pages, 4 figure

    Perfect Simulation of M/G/cM/G/c Queues

    Full text link
    In this paper we describe a perfect simulation algorithm for the stable M/G/cM/G/c queue. Sigman (2011: Exact Simulation of the Stationary Distribution of the FIFO M/G/c Queue. Journal of Applied Probability, 48A, 209--213) showed how to build a dominated CFTP algorithm for perfect simulation of the super-stable M/G/cM/G/c queue operating under First Come First Served discipline, with dominating process provided by the corresponding M/G/1M/G/1 queue (using Wolff's sample path monotonicity, which applies when service durations are coupled in order of initiation of service), and exploiting the fact that the workload process for the M/G/1M/G/1 queue remains the same under different queueing disciplines, in particular under the Processor Sharing discipline, for which a dynamic reversibility property holds. We generalize Sigman's construction to the stable case by comparing the M/G/cM/G/c queue to a copy run under Random Assignment. This allows us to produce a naive perfect simulation algorithm based on running the dominating process back to the time it first empties. We also construct a more efficient algorithm that uses sandwiching by lower and upper processes constructed as coupled M/G/cM/G/c queues started respectively from the empty state and the state of the M/G/cM/G/c queue under Random Assignment. A careful analysis shows that appropriate ordering relationships can still be maintained, so long as service durations continue to be coupled in order of initiation of service. We summarize statistical checks of simulation output, and demonstrate that the mean run-time is finite so long as the second moment of the service duration distribution is finite.Comment: 28 pages, 5 figure

    Decomposing the queue length distribution of processor-sharing models into queue lengths of permanent customer queues

    Get PDF
    We obtain a decomposition result for the steady state queue length distribution in egalitarian processor-sharing (PS) models. In particular, for an egalitarian PS queue with KK customer classes, we show that the marginal queue length distribution for class kk factorizes over the number of other customer types. The factorizing coefficients equal the queue length probabilities of a PS queue for type kk in isolation, in which the customers of the other types reside \textit{ permanently} in the system. Similarly, the (conditional) mean sojourn time for class kk can be obtained by conditioning on the number of permanent customers of the other types. The decomposition result implies linear relations between the marginal queue length probabilities, which also hold for other PS models such as the egalitarian processor-sharing models with state-dependent system capacity that only depends on the total number of customers in the system. Based on the exact decomposition result for egalitarian PS queues, we propose a similar decomposition for discriminatory processor-sharing (DPS) models, and numerically show that the approximation is accurate for moderate differences in service weights. \u

    Fluid and Diffusion Limits for Bike Sharing Systems

    Full text link
    Bike sharing systems have rapidly developed around the world, and they are served as a promising strategy to improve urban traffic congestion and to decrease polluting gas emissions. So far performance analysis of bike sharing systems always exists many difficulties and challenges under some more general factors. In this paper, a more general large-scale bike sharing system is discussed by means of heavy traffic approximation of multiclass closed queueing networks with non-exponential factors. Based on this, the fluid scaled equations and the diffusion scaled equations are established by means of the numbers of bikes both at the stations and on the roads, respectively. Furthermore, the scaling processes for the numbers of bikes both at the stations and on the roads are proved to converge in distribution to a semimartingale reflecting Brownian motion (SRBM) in a N2N^{2}-dimensional box, and also the fluid and diffusion limit theorems are obtained. Furthermore, performance analysis of the bike sharing system is provided. Thus the results and methodology of this paper provide new highlight in the study of more general large-scale bike sharing systems.Comment: 34 pages, 1 figure

    A Switching Fluid Limit of a Stochastic Network Under a State-Space-Collapse Inducing Control with Chattering

    Full text link
    Routing mechanisms for stochastic networks are often designed to produce state space collapse (SSC) in a heavy-traffic limit, i.e., to confine the limiting process to a lower-dimensional subset of its full state space. In a fluid limit, a control producing asymptotic SSC corresponds to an ideal sliding mode control that forces the fluid trajectories to a lower-dimensional sliding manifold. Within deterministic dynamical systems theory, it is well known that sliding-mode controls can cause the system to chatter back and forth along the sliding manifold due to delays in activation of the control. For the prelimit stochastic system, chattering implies fluid-scaled fluctuations that are larger than typical stochastic fluctuations. In this paper we show that chattering can occur in the fluid limit of a controlled stochastic network when inappropriate control parameters are used. The model has two large service pools operating under the fixed-queue-ratio with activation and release thresholds (FQR-ART) overload control which we proposed in a recent paper. We now show that, if the control parameters are not chosen properly, then delays in activating and releasing the control can cause chattering with large oscillations in the fluid limit. In turn, these fluid-scaled fluctuations lead to severe congestion, even when the arrival rates are smaller than the potential total service rate in the system, a phenomenon referred to as congestion collapse. We show that the fluid limit can be a bi-stable switching system possessing a unique nontrivial periodic equilibrium, in addition to a unique stationary point

    Control of Robotic Mobility-On-Demand Systems: a Queueing-Theoretical Perspective

    Full text link
    In this paper we present and analyze a queueing-theoretical model for autonomous mobility-on-demand (MOD) systems where robotic, self-driving vehicles transport customers within an urban environment and rebalance themselves to ensure acceptable quality of service throughout the entire network. We cast an autonomous MOD system within a closed Jackson network model with passenger loss. It is shown that an optimal rebalancing algorithm minimizing the number of (autonomously) rebalancing vehicles and keeping vehicles availabilities balanced throughout the network can be found by solving a linear program. The theoretical insights are used to design a robust, real-time rebalancing algorithm, which is applied to a case study of New York City. The case study shows that the current taxi demand in Manhattan can be met with about 8,000 robotic vehicles (roughly 60% of the size of the current taxi fleet). Finally, we extend our queueing-theoretical setup to include congestion effects, and we study the impact of autonomously rebalancing vehicles on overall congestion. Collectively, this paper provides a rigorous approach to the problem of system-wide coordination of autonomously driving vehicles, and provides one of the first characterizations of the sustainability benefits of robotic transportation networks.Comment: 10 pages, To appear at RSS 201

    Stochastic order results and equilibrium joining rules for the Bernoulli Feedback Queue

    Get PDF
    We consider customer joining behaviour for a system that consists of a FCFS queue with Bernoulli feedback. A consequence of the feedback characteristic is that the sojourn time of a customer already in the system depends on the joining decisions taken by future arrivals to the system. By establishing stochastic order results for coupled versions of the system, we establish the existence of homogeneous Nash equilibrium joining policies for both single and multiple customer types which are distinguished through distinct quality of service preference parameters. Further, it is shown that for a single customer type, the homogeneous policy is unique
    • 

    corecore