7,226 research outputs found

    Perspectives on the simulation of micro gas and nano liquid flows

    Get PDF
    Micro- and nano-scale fluid systems can behave very differently from their macro-scale counterparts. Remarkably, there is no sufficiently accurate, computationally efficient, and — most importantly — generally agreed fluid dynamic model that encapsulates all of this important behaviour. The only thing that researchers can agree on is that the conventional Navier-Stokes fluid equations are unable to capture the unique complexity of these often locally non-thermodynamic-equilibrium flows. Here, we outline recent work on developing and exploring new models for these flows, highlighting, in particular, slip flow as a quintessential non-equilibrium (or sub-continuum) phenomenon. We describe the successes and failures of various hydrodynamic and molecular models in capturing the non-equilibrium flow physics in current test applications in micro and nano engineering, including the aerodynamic drag of a sphere in a rarefied gas, and the flow of water along carbon nanotubes

    Recovery of the reflection response for marine walkaway VSP

    Get PDF

    Cold Period Plant-Water Relations Affecting Consumptive Use of Soil and Wastewater Reuse

    Get PDF

    Dynamics of heat and mass transport in a quantum insulator

    Full text link
    The real time evolution of two pieces of quantum insulators, initially at different temperatures, is studied when they are glued together. Specifically, each subsystem is taken as a Bose-Hubbard model in a Mott insulator state. The process of temperature equilibration via heat transfer is simulated in real time using the Minimally Entangled Typical Thermal States algorithm. The analytic theory based on quasiparticles transport is also given.Comment: small clarifying changes, 3 references adde
    corecore