22,977 research outputs found

    Dynamic Voltage Scaling Techniques for Energy Efficient Synchronized Sensor Network Design

    Get PDF
    Building energy-efficient systems is one of the principal challenges in wireless sensor networks. Dynamic voltage scaling (DVS), a technique to reduce energy consumption by varying the CPU frequency on the fly, has been widely used in other settings to accomplish this goal. In this paper, we show that changing the CPU frequency can affect timekeeping functionality of some sensor platforms. This phenomenon can cause an unacceptable loss of time synchronization in networks that require tight synchrony over extended periods, thus preventing all existing DVS techniques from being applied. We present a method for reducing energy consumption in sensor networks via DVS, while minimizing the impact of CPU frequency switching on time synchronization. The system is implemented and evaluated on a network of 11 Imote2 sensors mounted on a truss bridge and running a high-fidelity continuous structural health monitoring application. Experimental measurements confirm that the algorithm significantly reduces network energy consumption over the same network that does not use DVS, while requiring significantly fewer re-synchronization actions than a classic DVS algorithm.unpublishedis peer reviewe

    PASSIVE TIME SYNCHRONIZATION IN SENSOR NETWORKS USING OPPORTUNISTIC FM RADIO SIGNALS

    Get PDF
    ABSTRACT Time synchronization is a critical piece of infrastructure for any wireless sensor network. It is necessary for applications such as audio localization, beam-forming, velocity calculation, and duplicate event detection. All of which require the coordination of multiple nodes. Recent advances in low-cost, low-power wireless sensors have led to an increased interest in large-scale networks of small, wireless, low-power sensor nodes. Because of the more stringent power and cost requirements that this technology is driving, current time synchronization techniques must be updated to capitalize on these advances. One time synchronization method developed specifically for wireless sensor networks is Reference Broadcast Synchronization. In RBS, a reference broadcast is transmitted to sensor nodes that require synchronization. Be recording the time of arrival, nodes can then use those time stamps to synchronize with each other. This project aimed to make the RBS system even more robust, energy efficient, and cost effective by replacing the reference broadcast with an ambient RF signal (FM, TV, AM, or satellite signals) already prevalent in the environment. The purpose of this project was to demonstrate the viability of using Opportunistic RF synchronization by 1.) quantifying error, 2.) applying this synchronization method in a real world application, and 3.), implementing a wireless sensor network using Android smart phones as sensor nodes. Many of the objectives for the project were successfully completed. For convenience and economic reasons, an FM signal was chosen as the reference broadcast. FM Radio Synchronization error was then quantified using local FM Radio stations. The results of this experiment were very favorable. Using 5 second segments for correlation, total error was found to be 0.208±4.499μs. Using 3 second segments, average error was 2.33 ± 6.784μs. Using 400ms segments, synchronization error was calculated to be 4.76 ± 8.835μs. These results were comparable to sync errors of methods currently in widespread use. It was also shown that Opportunistic RF Synchronization could be used in real world applications as well. Again FM was the RF signal of choice. FM Radio Synchronization was tested in an Audio Localization experiment with favorable results. Implementation of an Android Wireless Sensor Network according to our specifications, however, could not be achieved. HTC EVO 4G’s were programmed to communicate through TCP / IP network connections, record audio with a microphone, and to record FM Radio streams from the EVO’s internal FM radio. Although recording these two sources separately as different data tracks was successful, simultaneous recording of these streams could not be accomplished (simultaneous recording is essential for Opportunistic RF Synchronization). Although the Android smart phone implementation was not a total success, this project still provided data that supported the practical use of Opportunistic RF Synchronization.AFRLNo embarg

    Adaptive Time Synchronization for Homogeneous WSNs

    Get PDF
    Wireless sensor networks (WSNs) are being used for observing real‐world phenomenon. It is important that sensor nodes (SNs) must be synchronized to a common time in order to precisely map the data collected by SNs. Clock synchronization is very challenging in WSNs as the sensor networks are resource constrained networks. It is essential that clock synchronization protocols designed for WSNs must be light weight i.e. SNs must be synchronized with fewer synchronization message exchanges. In this paper, we propose a clock synchronization protocol for WSNs where first of all cluster heads (CHs) are synchronized with the sink and then the cluster nodes (CNs) are synchronized with their respective CHs. CNs are synchronized with the help of time synchronization node (TSN) chosen by the respective CHs. Simulation results show that proposed protocol requires considerably fewer synchronization messages as compared with the reference broadcast synchronization (RBS) protocol and minimum variance unbiased estimation (MUVE) method. Clock skew correction mechanism applied in proposed protocol guarantees long term stability and hence decreases re‐ synchronization frequency thereby conserving more energ

    A firefly-inspired scheme for energy-efficient transmission scheduling using a self-organizing method in a wireless sensor network

    Get PDF
    Various types of natural phenomena are regarded as primary sources of information for artificial occurrences that involve spontaneous synchronization. Among the artificial occurrences that mimic natural phenomena are Wireless Sensor Networks (WSNs) and the Pulse Coupled Oscillator (PCO), which utilizes firefly synchronization for attracting mating partners. However, the PCO model was not appropriate for wireless sensor networks because sensor nodes are typically not capable to collect sensor data packets during transmission (because of packet collision and deafness). To avert these limitations, this study proposed a self-organizing time synchronization algorithm that was adapted from the traditional PCO model of fireflies flashing synchronization. Energy consumption and transmission delay will be reduced by using this method. Using the proposed model, a simulation exercise was performed and a significant improvement in energy efficiency was observed, as reflected by an improved transmission scheduling and a coordinated duty cycling and data gathering ratio. Therefore, the energy-efficient data gathering is enhanced in the proposed model than in the original PCO-based wave-traveling model. The battery lifetime of the Sensor Nodes (SNs) was also extended by using the proposed model

    Enhanced Precision Time Synchronization for Wireless Sensor Networks

    Get PDF
    Time synchronization in wireless sensor networks (WSNs) is a fundamental issue for the coordination of distributed entities and events. Nondeterministic latency, which may decrease the accuracy and precision of time synchronization can occur at any point in the network layers. Specially, random back-off by channel contention leads to a large uncertainty. In order to reduce the large nondeterministic uncertainty from channel contention, we propose an enhanced precision time synchronization protocol in this paper. The proposed method reduces the traffic needed for the synchronization procedure by selectively forwarding the packet. Furthermore, the time difference between sensor nodes increases as time advances because of the use of a clock source with a cheap crystal oscillator. In addition, we provide a means to maintain accurate time by adopting hardware-assisted time stamp and drift correction. Experiments are conducted to evaluate the performance of the proposed method, for which sensor nodes are designed and implemented. According to the evaluation results, the performance of the proposed method is better than that of a traditional time synchronization protocol

    A SCALABLE APPROACH FOR MANAGING OF EFFECTIVE COMMUNICATION IN UNDERWATER NETWORKS

    Get PDF
    In the earlier works, there were quite a lot of protocols regarding time synchronization was made for the wireless systems. From the industry point of view, there has been an important consideration for underwater sensor networks from the past few years.  Underwater sensor networks permits a broad range of aquatic applications such as monitoring of environment, monitoring of undersea and avoidance of disaster. In recent times, several methods of time synchronization were projected for underwater sensor networks in which the concern of long transmission delays is well tackled on the other hand, they overlook other issues.  In our work problem of time synchronization which is considered as important issue for managing in several underwater sensor networks. We focus on DAS scheme which is pair-wise, time-synchronization as well as cross-layered scheme meant for underwater networks. It provides an essential method for synchronization of two sensor nodes such as ordinary node as well as reference node, for different circumstances

    Wireless synchronisation for low cost wireless sensor networks using DCF77

    Get PDF
    Wireless Sensor Networks (WSN) consist out of multiple end nodes containing sensors and one or more coordinator nodes which poll and command the end nodes. WSN can prove very efficient in distributed energy data acquisition, e.g. for phasor or power measurements. These types of measurements however require relatively tight synchronisation, which is sometimes difficult to achieve for low-cost WSN. This paper explores the possibility of a low-cost wireless synchronization system using the DCF77 long wave time signal to achieve sub-millisecond synchronisation accuracy. The results are compared to conventional GPS based synchronisation. As a practical example, the implementation of the described synchronisation method is proposed for a non-contact electrical phase identifier, which uses synchronised current measurements to distinguishing between the different phases in an unmarked electrical distribution grid

    Joint localization and time synchronization in wireless sensor networks with anchor uncertainties

    Get PDF
    Although localization and synchronization share many aspects in common, they are traditionally treated separately. In this paper, we present a unified framework to jointly solve these two problems at the same time. The joint approach is attractive because it can solve both localization and synchronization using the same set of message exchanges. This is extremely important for energy saving, especially for the energy constrained wireless sensor networks. Furthermore, since the accuracy of localization and synchronization is very sensitive to the accuracy of anchor locations and timings, the joint localization and synchronization problem with inaccurate anchor is considered in this paper. A novel generalized total least squares (GTLS) based method is proposed and the Cramer-Rao lower bound (CRLB) for the joint localization and time synchronization is derived. Simulation results show that the mean square error performances of the proposed estimator can attain the CRLB. © 2009 IEEE.published_or_final_versionThe IEEE Conference on Wireless Communications and Networking (WCNC 2009), Budapest, Hungary, 5-8 April 2009. In Proceedings of IEEE WCNC, 2009, p. 1-
    corecore