405 research outputs found

    Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches

    Get PDF
    Pipelines are widely used for the transportation of hydrocarbon fluids over millions of miles all over the world. The structures of the pipelines are designed to withstand several environmental loading conditions to ensure safe and reliable distribution from point of production to the shore or distribution depot. However, leaks in pipeline networks are one of the major causes of innumerable losses in pipeline operators and nature. Incidents of pipeline failure can result in serious ecological disasters, human casualties and financial loss. In order to avoid such menace and maintain safe and reliable pipeline infrastructure, substantial research efforts have been devoted to implementing pipeline leak detection and localisation using different approaches. This paper discusses pipeline leakage detection technologies and summarises the state-of-the-art achievements. Different leakage detection and localisation in pipeline systems are reviewed and their strengths and weaknesses are highlighted. Comparative performance analysis is performed to provide a guide in determining which leak detection method is appropriate for particular operating settings. In addition, research gaps and open issues for development of reliable pipeline leakage detection systems are discussed. Document type: Articl

    Recent advances in pipeline monitoring and oil leakage detection technologies: principles and approaches.

    Get PDF
    Pipelines are widely used for the transportation of hydrocarbon fluids over millions of miles all over the world. The structures of the pipelines are designed to withstand several environmental loading conditions to ensure safe and reliable distribution from point of production to the shore or distribution depot. However, leaks in pipeline networks are one of the major causes of innumerable losses in pipeline operators and nature. Incidents of pipeline failure can result in serious ecological disasters, human casualties and financial loss. In order to avoid such menace and maintain safe and reliable pipeline infrastructure, substantial research efforts have been devoted to implementing pipeline leak detection and localisation using different approaches. This paper discusses pipeline leakage detection technologies and summarises the state-of-the-art achievements. Different leakage detection and localisation in pipeline systems are reviewed and their strengths and weaknesses are highlighted. Comparative performance analysis is performed to provide a guide in determining which leak detection method is appropriate for particular operating settings. In addition, research gaps and open issues for development of reliable pipeline leakage detection systems are discussed

    25th International Congress of the European Association for Endoscopic Surgery (EAES) Frankfurt, Germany, 14-17 June 2017 : Oral Presentations

    Get PDF
    Introduction: Ouyang has recently proposed hiatal surface area (HSA) calculation by multiplanar multislice computer tomography (MDCT) scan as a useful tool for planning treatment of hiatus defects with hiatal hernia (HH), with or without gastroesophageal reflux (MRGE). Preoperative upper endoscopy or barium swallow cannot predict the HSA and pillars conditions. Aim to asses the efficacy of MDCT’s calculation of HSA for planning the best approach for the hiatal defects treatment. Methods: We retrospectively analyzed 25 patients, candidates to laparoscopic antireflux surgery as primary surgery or hiatus repair concomitant with or after bariatric surgery. Patients were analyzed preoperatively and after one-year follow-up by MDCT scan measurement of esophageal hiatus surface. Five normal patients were enrolled as control group. The HSA’s intraoperative calculation was performed after complete dissection of the area considered a triangle. Postoperative CT-scan was done after 12 months or any time reflux symptoms appeared. Results: (1) Mean HSA in control patients with no HH, no MRGE was cm2 and similar in non-complicated patients with previous LSG and cruroplasty. (2) Mean HSA in patients candidates to cruroplasty was 7.40 cm2. (3) Mean HSA in patients candidates to redo cruroplasty for recurrence was 10.11 cm2. Discussion. MDCT scan offer the possibility to obtain an objective measurement of the HSA and the correlation with endoscopic findings and symptoms. The preoperative information allow to discuss with patients the proper technique when a HSA[5 cm2 is detected. During the follow-up a correlation between symptoms and failure of cruroplasty can be assessed. Conclusions: MDCT scan seems to be an effective non-invasive method to plan hiatal defect treatment and to check during the follow-up the potential recurrence. Future research should correlate in larger series imaging data with intraoperative findings

    KAVUAKA: a low-power application-specific processor architecture for digital hearing aids

    Get PDF
    The power consumption of digital hearing aids is very restricted due to their small physical size and the available hardware resources for signal processing are limited. However, there is a demand for more processing performance to make future hearing aids more useful and smarter. Future hearing aids should be able to detect, localize, and recognize target speakers in complex acoustic environments to further improve the speech intelligibility of the individual hearing aid user. Computationally intensive algorithms are required for this task. To maintain acceptable battery life, the hearing aid processing architecture must be highly optimized for extremely low-power consumption and high processing performance.The integration of application-specific instruction-set processors (ASIPs) into hearing aids enables a wide range of architectural customizations to meet the stringent power consumption and performance requirements. In this thesis, the application-specific hearing aid processor KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech recognition. Specialized and application-specific instructions are designed and added to the baseline instruction set architecture (ISA). Among the major contributions are a multiply-accumulate (MAC) unit for real- and complex-valued numbers, architectures for power reduction during register accesses, co-processors and a low-latency audio interface. With the proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the computation of a 128-point fast Fourier transform (FFT) compared to related programmable digital signal processors. The power consumption during register file accesses is decreased by 6 %to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %lower compared to related audio interfaces for frame size of 64 samples.The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains individual customizations and hardware features with a varying datapath width between 24-bit to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors are organized in two clusters that share memory, an audio interface, co-processors and serial interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC and 0.6 mW for the 64-bit processor.Case studies with four reference hearing aid algorithms are used to present and evaluate the proposed hardware architectures and optimizations. The program code for each processor and co-processor is generated and optimized with evolutionary algorithms for operation merging,instruction scheduling and register allocation. The KAVUAKA processor architecture is com-pared to related processor architectures in terms of processing performance, average power consumption, and silicon area requirements

    Sistema de control automático para la detección de fuga de gas natural

    Get PDF
    The object of study of this research was to evaluate and propose a control system capable of efficiently detecting gas leaks for domestic and commercial use. Thus, different control techniques were analyzed through the review of scientific literature and experimental observation. The resulting control proposal was through a fuzzy neuro control algorithm, which classifies gases by detecting the input signal to the system, through MQ sensors, and using the Arduino Mega open source electronics creation platform, as well as the Neuro Fuzzy program. MatLab designer. The neuro-fuzzy network helps to obtain better equations, "biases" and "weights" of the neural network, consequently, the classification and detection of the gas is in constant evaluation to better interpret the data obtained by the sensors. As a result, an acceptable detection of natural gas was obtained, as well as having a system that remains in constant evaluation of the input variable, that is, the data obtained by the sensors, which allows optimization of the detection.El objeto de estudio de esta investigación fue evaluar y proponer un sistema de control capaz de detectar eficientemente las fugas de gas de uso doméstico y comercial. Es así que se analizaron diferentes técnicas de control mediante la revisión de literatura científica y la observación experimental. La propuesta de control resultante fue mediante un algoritmo de control neuro difuso, el cual clasifica los gases detectando la señal de entrada al sistema, mediante sensores MQ, y empleando plataforma de creación de electrónica de código abierto Arduino Mega, así como el programa Neuro Fuzzy Designer de MatLab. La red neuro- difusa ayuda a obtener mejores ecuaciones, “bias” y “pesos” de la red neuronal, en consecuencia, la clasificación y detección del gas está en constante evaluación para interpretar mejor los datos obtenidos por los sensores. Como resultados se obtuvo una detección aceptable del gas natural y contar con un sistema que permanece en constante evaluación de la variable de entrada, es decir, los datos obtenidos por los sensores, lo cual permite optimizar la detección

    Experimental and Numerical Study on the Strain Behavior of Buried Pipelines Subjected to an Impact Load

    Get PDF
    Long-distance oil and gas pipelines are inevitably impacted by rockfalls during geologic hazards such as mud-rock flow and landslides, which have a serious effect on the safe operation of pipelines. In view of this, an experimental and numerical study on the strain behavior of buried pipelines under the impact load of rockfall was developed. The impact load exerted on the soil, and the strains of buried pipeline caused by the impact load were theoretically derived. A scale model experiment was conducted using a self-designed soil-box to simulate the complex geological conditions of the buried pipeline. The simulation model of hammer&ndash soil&ndash pipeline was established to investigate the dynamic response of the buried pipeline. Based on the theoretical, experimental, and finite element analysis (FEA) results, the overall strain behavior of the buried pipeline was obtained and the effects of parameters on the strain developments of the pipelines were analyzed. Research results show that the theoretical calculation results of the impact load and the peak strain were in good agreement with the experimental and FEA results, which indicates that the mathematical formula and the finite element models are accurate for the prediction of pipeline response under the impact load. In addition, decreasing the diameter, as well as increasing the wall thickness of the pipeline and the buried depth above the pipeline, could improve the ability of the pipeline to resist the impact load. These results could provide a reference for seismic design of pipelines in engineering. Document type: Articl

    Diffusion MRI tractography for oncological neurosurgery planning:Clinical research prototype

    Get PDF

    Diffusion MRI tractography for oncological neurosurgery planning:Clinical research prototype

    Get PDF
    corecore