86,830 research outputs found

    The C(3P) + NH3 reaction in interstellar chemistry: II. Low temperature rate constants and modeling of NH, NH2 and NH3 abundances in dense interstellar clouds

    Full text link
    A continuous supersonic flow reactor has been used to measure rate constants for the C + NH3 reaction over the temperature range 50 to 296 K. C atoms were created by the pulsed laser photolysis of CBr4. The kinetics of the title reaction were followed directly by vacuum ultra-violet laser induced fluorescence (VUV LIF) of C loss and through H formation. The experiments show unambiguously that the reaction is rapid at 296 K, becoming faster at lower temperatures, reaching a value of 1.8 10-10 cm3 molecule-1 s-1 at 50 K. As this reaction is not currently included in astrochemical networks, its influence on interstellar nitrogen hydride abundances is tested through a dense cloud model including gas-grain interactions. In particular, the effect of the ortho-to-para ratio of H2 which plays a crucial role in interstellar NH3 synthesis is examined

    Computational study of boron nitride nanotube synthesis: how catalyst morphology stabilizes the boron nitride bond

    Get PDF
    In an attempt to understand why catalytic methods for the growth of boron nitride nanotubes work much worse than for their carbon counterparts, we use first-principles calculations to study the energetics of elemental reactions forming N2, B2 and BN molecules on an iron catalyst. We observe that in the case of these small molecules, the catalytic activity is hindered by the formation of B2 on the iron surface. We also observe that the local morphology of a step edge present in our nanoparticle model stabilizes the boron nitride molecule with respect to B2 due to the ability of the step edge to offer sites with different coordination simultaneously for nitrogen and boron. Our results emphasize the importance of atomic steps for a high yield chemical vapor deposition growth of BN nanotubes and may outline new directions for improving the efficiency of the method.Comment: submitted to physical review

    Influence of geometry on the emitting properties of 2,3-naphthalimides

    Get PDF
    The luminescence properties of 2,3-naphthalimides have been studied using picosecond and nanosecond spectroscopies. In acetonitrile solution N-phenyl-2,3-naphthalimid(e3 ) is found to emit dual fluorescence with emission maxima at 385 and 490 nm, respectively. The short-wavelength emission corresponds to the known fluorescence of the naphthalimides and is demonstrated for 3 to originate from a molecular conformation in which the phenyl substituent and the naphthalimide skeleton are orthogonal to each other. The long-wavelength emission is assumed to originate from a singlet excited state formed by a ca. 90° rotation of the phenyl group so that the two moieties are coplanar. Only a small dipole moment change is found between this excited state and the ground state. Only short-wavelength emission is observed with a lifetime in the nanosecond range as in the case of 1 and 2 when phenyl rotation is blocked with a bulky ortho tert-butyl group (compound 4). Increasing the viscosity of a glycerol/ethanol medium enhances both the efficiency and the lifetime of the short-wavelength emission of 3. It appears that at 77 K the emission originates directly from the Franck-Condon state. At room temperature, the other two emitting species are shown to arise from the Franck-Condon state by competitive intramolecular geometrical relaxation processes. Structures 5 and 6 are tentatively put forward to explain the formation of naphthazepinedione 8 by a 2 \pi + 2 \pi photochemical cycloaddition reaction

    Isotopic fractionation of carbon, deuterium and nitrogen : a full chemical study

    Full text link
    Context. The increased sensitivity and high spectral resolution of millimeter telescopes allow the detection of an increasing number of isotopically substituted molecules in the interstellar medium. The 14N/ 15N ratio is difficult to measure directly for carbon containing molecules. Aims. We want to check the underlying hypothesis that the 13C/ 12C ratio of nitriles and isonitriles is equal to the elemental value via a chemical time dependent gas phase chemical model. Methods. We have built a chemical network containing D, 13C and 15N molecular species after a careful check of the possible fractionation reactions at work in the gas phase. Results. Model results obtained for 2 different physical conditions corresponding respectively to a moderately dense cloud in an early evolutionary stage and a dense depleted pre-stellar core tend to show that ammonia and its singly deuterated form are somewhat enriched in 15N, in agreement with observations. The 14N/ 15N ratio in N2H+ is found to be close to the elemental value, in contrast to previous models which obtain a significant enrichment, as we found that the fractionation reaction between 15N and N2H+ has a barrier in the entrance channel. The large values of the N2H+/15NNH+ and N2H+/ N15NH+ ratios derived in L1544 cannot be reproduced in our model. Finally we find that nitriles and isonitriles are in fact significantly depleted in 13C, questioning previous interpretations of observed C15N, HC15N and H15NC abundances from 13C containing isotopologues.Comment: 21 pages, 9 figures in the text, 3 Figures in the appendices. 7 tables in the text, 4 tables in the appendices. Accepted for publication by Astronomy Astrophysic
    • …
    corecore