61 research outputs found

    Cyclic transfers in school timetabling

    Get PDF
    In this paper we propose a neighbourhood structure based on sequential/cyclic moves and a cyclic transfer algorithm for the high school timetabling problem. This method enables execution of complex moves for improving an existing solution, while dealing with the challenge of exploring the neighbourhood efficiently. An improvement graph is used in which certain negative cycles correspond to the neighbours; these cycles are explored using a recursive method. We address the problem of applying large neighbourhood structure methods on problems where the cost function is not exactly the sum of independent cost functions, as it is in the set partitioning problem. For computational experiments we use four real world data sets for high school timetabling in the Netherlands and England.We present results of the cyclic transfer algorithm with different settings on these data sets. The costs decrease by 8–28% if we use the cyclic transfers for local optimization compared to our initial solutions. The quality of the best initial solutions are comparable to the solutions found in practice by timetablers

    Cyclic transfers in school timetabling

    Get PDF
    In this paper we propose a neighbourhood structure based\ud on sequential/cyclic moves and a Cyclic Transfer algorithm for the high school timetabling problem. This method enables execution of complex moves for improving an existing solution, while dealing with the challenge of exploring the neighbourhood efficiently. An improvement graph is used in which certain negative cycles correspond to the neighbours; these cycles are explored using a recursive method. We address the problem of applying large neighbourhood structure methods on problems where the cost function is not exactly the sum of independent cost functions, as it is in the set partitioning problem. For computational experiments we use four real world datasets for high school timetabling in the Netherlands and England. We present results of the cyclic transfer algorithm with different settings on these datasets. The costs decrease by 8% to 28% if we use the cyclic transfers for local optimization compared to our initial solutions. The quality of the best initial solutions are comparable to the solutions found in practice by timetablers

    An XML format for benchmarks in High School Timetabling

    Get PDF
    The High School Timetabling Problem is amongst the most widely used timetabling problems. This problem has varying structures in different high schools even within the same country or educational system. Due to lack of standard benchmarks and data formats this problem has been studied less than other timetabling problems in the literature. In this paper we describe the High School Timetabling Problem in several countries in order to find a common set of constraints and objectives. Our main goal is to provide exchangeable benchmarks for this problem. To achieve this we propose a standard data format suitable for different countries and educational systems, defined by an XML schema. The schema and datasets are available online

    A stochastic local search algorithm with adaptive acceptance for high-school timetabling

    Get PDF
    Automating high school timetabling is a challenging task. This problem is a well known hard computational problem which has been of interest to practitioners as well as researchers. High schools need to timetable their regular activities once per year, or even more frequently. The exact solvers might fail to find a solution for a given instance of the problem. A selection hyper-heuristic can be defined as an easy-to-implement, easy-to-maintain and effective 'heuristic to choose heuristics' to solve such computationally hard problems. This paper describes the approach of the team hyper-heuristic search strategies and timetabling (HySST) to high school timetabling which competed in all three rounds of the third international timetabling competition. HySST generated the best new solutions for three given instances in Round 1 and gained the second place in Rounds 2 and 3. It achieved this by using a fairly standard stochastic search method but significantly enhanced by a selection hyper-heuristic with an adaptive acceptance mechanism. © 2014 Springer Science+Business Media New York

    Enhancing the Sorting Layers in the Initial Stage of High School Timetabling

    Get PDF
    The high school timetabling problem (HSTP) is considered as an NP-Complete problem as the optimal solution for it, is still not discovered by any algorithm. Generally, NP-Complete problem was solved firstly by constructing the initial solution, in the construction phase. The initial solution will be improvised in the improvisation phase. KHE is an algorithm that generates initial solution of HSTP. The layer sorting procedure in KHE is based on a certain priority. For every two layers, the layers will be ranked based on the highest value of duration. If both layers have equal value of duration, the layer with the highest value of demand will be at a higher rank. If both layers have equal value of demand. The layer will be arranged according to the index value of the layer. These sorting criteria use the layer properties independently which causes non-good results after the time-assignment phase. Therefore, this study proposed a mathematical model based on the Markov Chain Model for the sorting procedure that combines the layer properties in a formula. The proposed model was executed with 40 datasets of XHSTT2014, and it shows better results on 25 datasets of XHSTT2014 compared to the KHE algorithm. The mathematical model based on Markov Chain proposed in this study is able to improvise the original sorting of KHE

    A Hidden Markov Model Approach to the Problem of Heuristic Selection in Hyper-Heuristics with a Case Study in High School Timetabling Problems

    Get PDF
    Operations research is a well-established field that uses computational systems to support decisions in business and public life. Good solutions to operations research problems can make a large difference to the efficient running of businesses and organisations and so the field often searches for new methods to improve these solutions. The high school timetabling problem is an example of an operations research problem and is a challenging task which requires assigning events and resources to time slots subject to a set of constraints. In this article, a new sequence-based selection hyper-heuristic is presented that produces excellent results on a suite of high school timetabling problems. In this study, we present an easy-to-implement, easy-to-maintain, and effective sequence-based selection hyper-heuristic to solve high school timetabling problems using a benchmark of unified real-world instances collected from different countries. We show that with sequence-based methods, it is possible to discover new best known solutions for a number of the problems in the timetabling domain. Through this investigation, the usefulness of sequence-based selection hyper-heuristics has been demonstrated and the capability of these methods has been shown to exceed the state of the art

    Solving Multiple Timetabling Problems at Danish High Schools

    Get PDF

    Implementation of the Timetable Problem Using Self-assembly of DNA Tiles

    Full text link
    corecore