6,585 research outputs found

    An Upper Bound to Zero-Delay Rate Distortion via Kalman Filtering for Vector Gaussian Sources

    Full text link
    We deal with zero-delay source coding of a vector Gaussian autoregressive (AR) source subject to an average mean squared error (MSE) fidelity criterion. Toward this end, we consider the nonanticipative rate distortion function (NRDF) which is a lower bound to the causal and zero-delay rate distortion function (RDF). We use the realization scheme with feedback proposed in [1] to model the corresponding optimal "test-channel" of the NRDF, when considering vector Gaussian AR(1) sources subject to an average MSE distortion. We give conditions on the vector Gaussian AR(1) source to ensure asymptotic stationarity of the realization scheme (bounded performance). Then, we encode the vector innovations due to Kalman filtering via lattice quantization with subtractive dither and memoryless entropy coding. This coding scheme provides a tight upper bound to the zero-delay Gaussian RDF. We extend this result to vector Gaussian AR sources of any finite order. Further, we show that for infinite dimensional vector Gaussian AR sources of any finite order, the NRDF coincides with the zero-delay RDF. Our theoretical framework is corroborated with a simulation example.Comment: 7 pages, 6 figures, accepted for publication in IEEE Information Theory Workshop (ITW

    On the capacity of MIMO broadcast channels with partial side information

    Get PDF
    In multiple-antenna broadcast channels, unlike point-to-point multiple-antenna channels, the multiuser capacity depends heavily on whether the transmitter knows the channel coefficients to each user. For instance, in a Gaussian broadcast channel with M transmit antennas and n single-antenna users, the sum rate capacity scales like Mloglogn for large n if perfect channel state information (CSI) is available at the transmitter, yet only logarithmically with M if it is not. In systems with large n, obtaining full CSI from all users may not be feasible. Since lack of CSI does not lead to multiuser gains, it is therefore of interest to investigate transmission schemes that employ only partial CSI. We propose a scheme that constructs M random beams and that transmits information to the users with the highest signal-to-noise-plus-interference ratios (SINRs), which can be made available to the transmitter with very little feedback. For fixed M and n increasing, the throughput of our scheme scales as MloglognN, where N is the number of receive antennas of each user. This is precisely the same scaling obtained with perfect CSI using dirty paper coding. We furthermore show that a linear increase in throughput with M can be obtained provided that M does not not grow faster than logn. We also study the fairness of our scheduling in a heterogeneous network and show that, when M is large enough, the system becomes interference dominated and the probability of transmitting to any user converges to 1/n, irrespective of its path loss. In fact, using M=αlogn transmit antennas emerges as a desirable operating point, both in terms of providing linear scaling of the throughput with M as well as in guaranteeing fairness

    Stabilization of Linear Systems Over Gaussian Networks

    Full text link
    The problem of remotely stabilizing a noisy linear time invariant plant over a Gaussian relay network is addressed. The network is comprised of a sensor node, a group of relay nodes and a remote controller. The sensor and the relay nodes operate subject to an average transmit power constraint and they can cooperate to communicate the observations of the plant's state to the remote controller. The communication links between all nodes are modeled as Gaussian channels. Necessary as well as sufficient conditions for mean-square stabilization over various network topologies are derived. The sufficient conditions are in general obtained using delay-free linear policies and the necessary conditions are obtained using information theoretic tools. Different settings where linear policies are optimal, asymptotically optimal (in certain parameters of the system) and suboptimal have been identified. For the case with noisy multi-dimensional sources controlled over scalar channels, it is shown that linear time varying policies lead to minimum capacity requirements, meeting the fundamental lower bound. For the case with noiseless sources and parallel channels, non-linear policies which meet the lower bound have been identified
    • …
    corecore