3,920 research outputs found

    Tight Bounds for the Cover Times of Random Walks with Heterogeneous Step Lengths

    Get PDF
    Search patterns of randomly oriented steps of different lengths have been observed on all scales of the biological world, ranging from the microscopic to the ecological, including in protein motors, bacteria, T-cells, honeybees, marine predators, and more. Through different models, it has been demonstrated that adopting a variety in the magnitude of the step lengths can greatly improve the search efficiency. However, the precise connection between the search efficiency and the number of step lengths in the repertoire of the searcher has not been identified. Motivated by biological examples in one-dimensional terrains, a recent paper studied the best cover time on an n-node cycle that can be achieved by a random walk process that uses k step lengths. By tuning the lengths and corresponding probabilities the authors therein showed that the best cover time is roughly n 1+Θ(1/k). While this bound is useful for large values of k, it is hardly informative for small k values, which are of interest in biology. In this paper, we provide a tight bound for the cover time of such a walk, for every integer k > 1. Specifically, up to lower order polylogarithmic factors, the upper bound on the cover time is a polynomial in n of exponent 1+ 1/(2k−1). For k = 2, 3, 4 and 5 the exponent is thus 4/3 , 6/5 , 8/7 , and 10/9 , respectively. Informally, our result implies that, as long as the number of step lengths k is not too large, incorporating an additional step length to the repertoire of the process enables to improve the cover time by a polynomial factor, but the extent of the improvement gradually decreases with k

    New Bounds for Edge-Cover by Random Walk

    Full text link
    We show that the expected time for a random walk on a (multi-)graph GG to traverse all mm edges of GG, and return to its starting point, is at most 2m22m^2; if each edge must be traversed in both directions, the bound is 3m23m^2. Both bounds are tight and may be applied to graphs with arbitrary edge lengths, with implications for Brownian motion on a finite or infinite network of total edge-length mm

    Random walks which prefer unvisited edges : exploring high girth even degree expanders in linear time.

    Get PDF
    Let G = (V,E) be a connected graph with |V | = n vertices. A simple random walk on the vertex set of G is a process, which at each step moves from its current vertex position to a neighbouring vertex chosen uniformly at random. We consider a modified walk which, whenever possible, chooses an unvisited edge for the next transition; and makes a simple random walk otherwise. We call such a walk an edge-process (or E -process). The rule used to choose among unvisited edges at any step has no effect on our analysis. One possible method is to choose an unvisited edge uniformly at random, but we impose no such restriction. For the class of connected even degree graphs of constant maximum degree, we bound the vertex cover time of the E -process in terms of the edge expansion rate of the graph G, as measured by eigenvalue gap 1 -λmax of the transition matrix of a simple random walk on G. A vertex v is ℓ -good, if any even degree subgraph containing all edges incident with v contains at least ℓ vertices. A graph G is ℓ -good, if every vertex has the ℓ -good property. Let G be an even degree ℓ -good expander of bounded maximum degree. Any E -process on G has vertex cover time equation image This is to be compared with the Ω(nlog n) lower bound on the cover time of any connected graph by a weighted random walk. Our result is independent of the rule used to select the order of the unvisited edges, which could, for example, be chosen on-line by an adversary. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 00, 000–000, 2013 As no walk based process can cover an n vertex graph in less than n - 1 steps, the cover time of the E -process is of optimal order when ℓ =Θ (log n). With high probability random r -regular graphs, r ≥ 4 even, have ℓ =Ω (log n). Thus the vertex cover time of the E -process on such graphs is Θ(n)
    • …
    corecore