4,013 research outputs found

    The acquaintance time of (percolated) random geometric graphs

    Full text link
    In this paper, we study the acquaintance time \AC(G) defined for a connected graph GG. We focus on \G(n,r,p), a random subgraph of a random geometric graph in which nn vertices are chosen uniformly at random and independently from [0,1]2[0,1]^2, and two vertices are adjacent with probability pp if the Euclidean distance between them is at most rr. We present asymptotic results for the acquaintance time of \G(n,r,p) for a wide range of p=p(n)p=p(n) and r=r(n)r=r(n). In particular, we show that with high probability \AC(G) = \Theta(r^{-2}) for G \in \G(n,r,1), the "ordinary" random geometric graph, provided that πnr2lnn\pi n r^2 - \ln n \to \infty (that is, above the connectivity threshold). For the percolated random geometric graph G \in \G(n,r,p), we show that with high probability \AC(G) = \Theta(r^{-2} p^{-1} \ln n), provided that p n r^2 \geq n^{1/2+\eps} and p < 1-\eps for some \eps>0

    Acquaintance time of random graphs near connectivity threshold

    Full text link
    Benjamini, Shinkar, and Tsur stated the following conjecture on the acquaintance time: asymptotically almost surely AC(G)p1logO(1)nAC(G) \le p^{-1} \log^{O(1)} n for a random graph GG(n,p)G \in G(n,p), provided that GG is connected. Recently, Kinnersley, Mitsche, and the second author made a major step towards this conjecture by showing that asymptotically almost surely AC(G)=O(logn/p)AC(G) = O(\log n / p), provided that GG has a Hamiltonian cycle. In this paper, we finish the task by showing that the conjecture holds in the strongest possible sense, that is, it holds right at the time the random graph process creates a connected graph. Moreover, we generalize and investigate the problem for random hypergraphs

    Evolutionary Dilemmas in a Social Network

    Full text link
    We simulate the prisoner's dilemma and hawk-dove games on a real social acquaintance network. Using a discrete analogue of replicator dynamics, we show that surprisingly high levels of cooperation can be achieved, contrary to what happens in unstructured mixing populations. Moreover, we empirically show that cooperation in this network is stable with respect to invasion by defectors.Comment: 13 pages, 9 figures; to be published in Lecture Notes in Computer Science 200

    Seeding with Costly Network Information

    Full text link
    We study the task of selecting kk nodes in a social network of size nn, to seed a diffusion with maximum expected spread size, under the independent cascade model with cascade probability pp. Most of the previous work on this problem (known as influence maximization) focuses on efficient algorithms to approximate the optimal seed set with provable guarantees, given the knowledge of the entire network. However, in practice, obtaining full knowledge of the network is very costly. To address this gap, we first study the achievable guarantees using o(n)o(n) influence samples. We provide an approximation algorithm with a tight (1-1/e){\mbox{OPT}}-\epsilon n guarantee, using Oϵ(k2logn)O_{\epsilon}(k^2\log n) influence samples and show that this dependence on kk is asymptotically optimal. We then propose a probing algorithm that queries Oϵ(pn2log4n+kpn1.5log5.5n+knlog3.5n){O}_{\epsilon}(p n^2\log^4 n + \sqrt{k p} n^{1.5}\log^{5.5} n + k n\log^{3.5}{n}) edges from the graph and use them to find a seed set with the same almost tight approximation guarantee. We also provide a matching (up to logarithmic factors) lower-bound on the required number of edges. To address the dependence of our probing algorithm on the independent cascade probability pp, we show that it is impossible to maintain the same approximation guarantees by controlling the discrepancy between the probing and seeding cascade probabilities. Instead, we propose to down-sample the probed edges to match the seeding cascade probability, provided that it does not exceed that of probing. Finally, we test our algorithms on real world data to quantify the trade-off between the cost of obtaining more refined network information and the benefit of the added information for guiding improved seeding strategies
    corecore