64 research outputs found

    Ultracapacitors for port crane applications: Sizing and techno-economic analysis

    Get PDF
    The use of energy storage with high power density and fast response time at container terminals (CTs) with a power demand of tens of megawatts is one of the most critical factors for peak reduction and economic benefits. Peak shaving can balance the load demand and facilitate the participation of small power units in generation based on renewable energies. Therefore, in this paper, the economic efficiency of peak demand reduction in ship to shore (STS) cranes based on the ultracapacitor (UC) energy storage sizing has been investigated. The results show the UC energy storage significantly reduce the peak demand, increasing the load factor, load leveling, and most importantly, an outstanding reduction in power and energy cost. In fact, the suggested approach is the start point to improve reliability and reduce peak demand energy consumption

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies

    A comprehensive study of key Electric Vehicle (EV) components, technologies, challenges, impacts, and future direction of development

    Get PDF
    Abstract: Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept. There are possibilities of immense environmental benefits as well, as the EVs can extensively reduce the greenhouse gas emissions produced by the transportation sector. However, there are some major obstacles for EVs to overcome before totally replacing ICE vehicles. This paper is focused on reviewing all the useful data available on EV configurations, battery energy sources, electrical machines, charging techniques, optimization techniques, impacts, trends, and possible directions of future developments. Its objective is to provide an overall picture of the current EV technology and ways of future development to assist in future researches in this sector

    Building an Electric Motorcycle: Design and Construction of a Zero Roadside Emissions Vehicle

    Get PDF
    This report details the process of building an electric drive system for a motorcycle, and covers some of the background information necessary for a full understanding of the components involved and their functionality. Topics discussed in this paper are: power estimates, compressed air power, battery chemistries, battery management systems, battery chargers, electric motors, motor controllers, direct sprocket drive, frame modifications, part mounting, and wiring. These topics are discussed in the context in which they apply to the project build, which is a conversion of a street motorcycle to fully electric drive. The complete electric drive system which resulted from this project was fully assembled on a sport motorcycle chassis, and has an estimated top speed and average range of 70 mph and 40 miles

    Energy recovery from landing aircraft

    Get PDF
    Currently, renewable energy sources are the main driver for future electricity generation. This trend is growing faster in the developed countries in order to reduce the green house effect and also in response to the limited supply of oil, gas and coal which are currently the major sources for electric generation. For example, the main renewable energy sources are from wind energy and solar energy but these energies are only available to those countries that are exposed to these resources. In this thesis an alternative energy source is investigated where it can be generated from the moving objects or in form of kinetic energy. The idea is to convert the kinetic energy during landing aircraft into electrical energy which it can also be stored and transferred to the existing electrical network. To convert this kinetic energy to electrical energy, the linear generator (LG) and uncontrolled rectifier have been used for energy conversion. The LG have been modelled in 3-phase model or in dq model and combined with the diode rectifier that is used to generate the dc signal outputs. Due to the uncontrolled rectifier the electrical outputs will have decaying amplitude along the landing time. This condition also happen to the LG outputs such as the force and the power output. In order to control these outputs the cascaded buck-boost converter has been used. This converter is responsible to control the output current at the rectifier and also the LG output power during landing to more controllable power output. Here, the H∞ current control strategy has been used as it offers a very good performance for current tracking and to increase the robustness of the controller. During landing, huge power is produced at the beginning and when the landing time is increased, the generated input power from LG is reduced to zero. Due to this, the energy storage that consists of ultracapacitor, bidirectional converter and boost converter are used in order to store and to release the energy depends on the input power source and load grid power. The voltage proportional-integral (PI) control strategy has been used for both the converters. The last part is to transfer the energy from the source and at the ultracapacitor to the load by using the inverter as the processing device. The power controller and current controller are used at the inverter in order to control the power ?ow between the inverter and the grid. This is when the reference power is determined by the load power in order to generate the reference currents by using the voltage oriented controller (VOC), while the H∞ current controller is used to regulate the inverter currents in order to inject the suitable amount of current that refer to the load power. Finally, a complete energy recovery system for landing aircraft with the grid connection have been put together to make the whole system to be as a new renewable energy source for the future electricity generation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Hybrid energy storage systems via power electronic converters

    Get PDF
    In recent years, many research lines have focused their efforts on improving energy efficiency and developing renewable energy sources. In this context, the use of energy storage systems is on the rise, as they can contribute to the integration of renewables to the main electrical grid. However, energy storage systems are divided into high energy or high power devices. Due to the lack of a solution covering both aspects, researchers are forced to find alternatives. The hybridization of different energy storage technologies is presented as a suitable solution for this problem, since it combines high power and high energy within the same system. The main goal of this thesis is the design and implementation of a hybrid energy storage system (HESS), capable of improving the performance provided by a single storage technology. As a first step in this direction, this document reviews and classifies the most relevant HESS topologies found in the literature. This allows a better understanding of the drawbacks and benefits of each configuration. To ensure the optimal use of this HESS, it is essential to design a suitable energy management strategy and a proper power electronic converter control. To this end, the control structure has been analyzed from different approaches. On the one hand there would be the classic multilevel control structure, which usually consists of three levels among which are the operating constraints, the power sharing and at the lowest level the control of the converter. On the other hand there would be the single level control structure in which both, the power distribution and the control of the converter, are integrated within the same level by using modern MPC control algorithms. Finally, three different case studies are presented to show the practical application of the developed control strategies together with the main conclusions of the thesis.Azken urteetan, ikerketa-lerro askok eraginkortasun energetikoa hobetzeko eta energia berriztagarriak garatzeko ahaleginak egin dituzte. Testuinguru honetan, energia metatze sistemen erabilera geroz eta handiagoa da, berriztagarrien integrazioa sare elektrikoarekin erraztu dezaketelako. Hala ere, energia altuko edo potentzia altuko metatze sistemak bakarrik aukeratu daitezke. Horregatik, ikertzaileek alternatiba berriak bilatzera behartuta daude. Energia metatze sistema desberdinen hibridazioa, arazo horri irtenbidea ematen dio. Honekin, potentzia eta energia maila altuak sistema bakar batetan batu daitezke. Tesi honen helburu nagusia, energia metatze sistema hibrido (HESS sigla, ingelesetik Hybrid Energy Storage System) bat diseinatzea eta inplementatzea da. Sistema honek, teknologia bakar batek eskaintzen duen errendimendua hobetzeko gai izan beharko luke. Lehen urratsa bezala, dokumentu honek literaturan aurkitutako topologia hibrido garrantzitsuenak laburbildu eta batzen ditu. Honi esker, konfigurazio bakoitzaren abantaila eta desabantailak hobeto ulertzea ahal da. HESS honen erabilera optimoa bermatzeko, ezinbestekoa da energia kudeatzeko estrategia on bat diseinatzea bihurgailu elektronikoaren kontrol egokiarekin batera. Horretarako, kontrol egitura ikuspegi desberdinetatik aztertuko da. Alde batetik, maila anitzeko kontrol egitura klasikoa egongo litzateke, normalean hiru mailaz osatua dagoena. Goi mailan funtzionamendu eta segurtasun mugak egongo lirateke, erdiko mailan potentzia banaketa, eta azkenik bihurgailuaren maila baxuko kontrola. Bestalde, maila bakarreko kontrol egitura egongo litzateke non mugak, potentzia banaketa eta bihurgailuaren kontrola maila berean integratzen dira kontrol iragarleko algoritmoen bidez (MPC). Azkenik, hiru kasu desberdin aurkezten dira garatutako kontrolen aplikazio praktikoa erakusteko tesiaren ondorio nagusiekin batera.En los últimos años, numerosas líneas de investigación han centrado sus esfuerzos en mejorar la eficiencia energética junto con el desarrollo de fuentes de generación renovables. En este contexto, el uso de sistemas de almacenamiento de energía está al alza, ya que estos pueden contribuir a la integración de las renovables en la red eléctrica convencional. Sin embargo, la necesidad de elegir entre dispositivos de alta energía o alta potencia, obliga a los investigadores a buscar otras alternativas. La hibridación de diferentes sistemas de almacenamiento se presenta como una solución apropiada para este problema, ya que combina alta energía y alta potencia dentro de un mismo sistema. El objetivo principal de esta tesis es el diseño e implementación de un sistema híbrido de almacenamiento de energía (sigla HESS, del inglés Hybrid Energy Storage System), capaz de mejorar las prestaciones que proporcionaría el uso de una única tecnología. Como primer paso en esta dirección, en este documento resume y clasifica las topologías de hibridación más relevantes encontradas en la literatura. Esto permite una mejor comprensión de los beneficios e inconvenientes de cada configuración. Para garantizar el uso óptimo de dicho HESS, es esencial diseñar una estrategia adecuada de gestión de energía junto con un control óptimo del convertidor electrónico de potencia. Para lograr este fin, la estructura de control ha sido analizada desde diferentes enfoques. Por un lado se encontraría la estructura de control multinivel clásica, la cual generalmente consta de tres niveles. En el nivel más alto se encontrarían las restricciones operativas y de seguridad, en el intermedio se encontraría la división de potencia, y por último el control de nivel bajo del convertidor. Por otro lado, se encontraría la estructura de control de un único nivel, en la que tanto las restricciones, el reparto de potencia y el control del convertidor se integran dentro del mismo nivel mediante algoritmos de control predictivo (MPC). Finalmente, se presentan tres casos de estudio para mostrar la aplicación práctica de las estrategias de control desarrolladas junto con las principales conclusiones de la tesis

    Control of Energy Storage

    Get PDF
    Energy storage can provide numerous beneficial services and cost savings within the electricity grid, especially when facing future challenges like renewable and electric vehicle (EV) integration. Public bodies, private companies and individuals are deploying storage facilities for several purposes, including arbitrage, grid support, renewable generation, and demand-side management. Storage deployment can therefore yield benefits like reduced frequency fluctuation, better asset utilisation and more predictable power profiles. Such uses of energy storage can reduce the cost of energy, reduce the strain on the grid, reduce the environmental impact of energy use, and prepare the network for future challenges. This Special Issue of Energies explore the latest developments in the control of energy storage in support of the wider energy network, and focus on the control of storage rather than the storage technology itself

    A review of power electronics equipment for all-electric ship MVDC power systems

    Get PDF
    Medium Voltage DC (MVDC) distribution Power Systems for all-electric ships (AES) can be regarded as functionally composed of three subsystems, namely the power sources, the load centers and the distribution network. Extensive use of power electronics is required for connecting power sources and load centers to the MVDC bus and for protecting the MVDC power system through properly placed DC circuit breakers. In this paper, an overview is given of the power electronics equipment found in the literature and on the market that could be suitable for use in future AES MVDC power systems. Some industrial experiences regarding DC generator systems, energy storage apparatus and solid-state DC circuit breaker prototypes are reported in the paper as examples of state-of-the-art realizations. Different DC/DC converters, which can be employed as solid-state transformers, are also discussed and a structure obtained by combining them is proposed
    corecore