7,012 research outputs found

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Achieving Secure and Efficient Cloud Search Services: Cross-Lingual Multi-Keyword Rank Search over Encrypted Cloud Data

    Full text link
    Multi-user multi-keyword ranked search scheme in arbitrary language is a novel multi-keyword rank searchable encryption (MRSE) framework based on Paillier Cryptosystem with Threshold Decryption (PCTD). Compared to previous MRSE schemes constructed based on the k-nearest neighbor searcha-ble encryption (KNN-SE) algorithm, it can mitigate some draw-backs and achieve better performance in terms of functionality and efficiency. Additionally, it does not require a predefined keyword set and support keywords in arbitrary languages. However, due to the pattern of exact matching of keywords in the new MRSE scheme, multilingual search is limited to each language and cannot be searched across languages. In this pa-per, we propose a cross-lingual multi-keyword rank search (CLRSE) scheme which eliminates the barrier of languages and achieves semantic extension with using the Open Multilingual Wordnet. Our CLRSE scheme also realizes intelligent and per-sonalized search through flexible keyword and language prefer-ence settings. We evaluate the performance of our scheme in terms of security, functionality, precision and efficiency, via extensive experiments

    Pheromone-based In-Network Processing for wireless sensor network monitoring systems

    Get PDF
    Monitoring spatio-temporal continuous fields using wireless sensor networks (WSNs) has emerged as a novel solution. An efficient data-driven routing mechanism for sensor querying and information gathering in large-scale WSNs is a challenging problem. In particular, we consider the case of how to query the sensor network information with the minimum energy cost in scenarios where a small subset of sensor nodes has relevant readings. In order to deal with this problem, we propose a Pheromone-based In-Network Processing (PhINP) mechanism. The proposal takes advantages of both a pheromone-based iterative strategy to direct queries towards nodes with relevant information and query- and response-based in-network filtering to reduce the number of active nodes. Additionally, we apply reinforcement learning to improve the performance. The main contribution of this work is the proposal of a simple and efficient mechanism for information discovery and gathering. It can reduce the messages exchanged in the network, by allowing some error, in order to maximize the network lifetime. We demonstrate by extensive simulations that using PhINP mechanism the query dissemination cost can be reduced by approximately 60% over flooding, with an error below 1%, applying the same in-network filtering strategy.Fil: Riva, Guillermo Gaston. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Finochietto, Jorge Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentin

    Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks

    Get PDF
    This chapter discusses the need of security and privacy protection mechanisms in aggregation protocols used in wireless sensor networks (WSN). It presents a comprehensive state of the art discussion on the various privacy protection mechanisms used in WSNs and particularly focuses on the CPDA protocols proposed by He et al. (INFOCOM 2007). It identifies a security vulnerability in the CPDA protocol and proposes a mechanism to plug that vulnerability. To demonstrate the need of security in aggregation process, the chapter further presents various threats in WSN aggregation mechanisms. A large number of existing protocols for secure aggregation in WSN are discussed briefly and a protocol is proposed for secure aggregation which can detect false data injected by malicious nodes in a WSN. The performance of the protocol is also presented. The chapter concludes while highlighting some future directions of research in secure data aggregation in WSNs.Comment: 32 pages, 7 figures, 3 table

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach

    Distributed Database Management Techniques for Wireless Sensor Networks

    Full text link
    Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published versions of their papers.In sensor networks, the large amount of data generated by sensors greatly influences the lifetime of the network. In order to manage this amount of sensed data in an energy-efficient way, new methods of storage and data query are needed. In this way, the distributed database approach for sensor networks is proved as one of the most energy-efficient data storage and query techniques. This paper surveys the state of the art of the techniques used to manage data and queries in wireless sensor networks based on the distributed paradigm. A classification of these techniques is also proposed. The goal of this work is not only to present how data and query management techniques have advanced nowadays, but also show their benefits and drawbacks, and to identify open issues providing guidelines for further contributions in this type of distributed architectures.This work was partially supported by the Instituto de Telcomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, by the Ministerio de Ciencia e Innovacion, through the Plan Nacional de I+D+i 2008-2011 in the Subprograma de Proyectos de Investigacion Fundamental, project TEC2011-27516, by the Polytechnic University of Valencia, though the PAID-05-12 multidisciplinary projects, by Government of Russian Federation, Grant 074-U01, and by National Funding from the FCT-Fundacao para a Ciencia e a Tecnologia through the Pest-OE/EEI/LA0008/2013 Project.Diallo, O.; Rodrigues, JJPC.; Sene, M.; Lloret, J. (2013). Distributed Database Management Techniques for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems. PP(99):1-17. https://doi.org/10.1109/TPDS.2013.207S117PP9
    corecore