42 research outputs found

    Optimisation intégrée des rotations et des blocs mensuels personnalisés des pilotes et des copilotes simultanément

    Get PDF
    RÉSUMÉ: Le problème de construction des blocs mensuels pour les membres d’équipage consiste à déterminer des horaires mensuels pour les membres d’équipage des compagnies aériennes tels que tous les vols planifiés sur un horizon de planification donné (généralement un mois) sont couverts tout en satisfaisant un certain nombre de contraintes. En raison de sa taille et de sa complexité, ce problème est généralement résolu séquentiellement en deux étapes: la construction des rotations suivie par la construction des blocs mensuels. Une rotation est une séquence de vols, de connexions et de pauses effectuée par un équipage partant et revenant à la même base. Le problème de construction des rotations consiste à déterminer un ensemble de rotations réalisables à un coût minimal, de telle sorte que chaque vol soit couvert exactement une seule fois. Dans le problème d’affectation des membres d’équipage, l’objectif est de construire des horaires mensuels à partir de ces rotations pour un ensemble donné de pilotes et de copilotes. La construction des rotations et des blocs mensuels doit respecter les règles de la sécurité aérienne, les règles d’opération de la compagnie et les règles contenues dans les conventions collectives entre les employés et la compagnie aérienne. Cependant, il peut s’avérer impossible que l’approche séquentielle obtienne une solution globale optimale car le domaine de décision du problème d’affectation des membres d’équipage est réduit par les décisions précédemment prises dans le problème de construction des rotations des membres d’équipage. L’objectif principal de cette thèse est de proposer des modèles intégrés et de nouvelles approches qui permettent de résoudre le problème de planification des membres d’équipage pour un ensemble donné de pilotes et de copilotes simultanément. Tous les tests réalisés dans cette thèse se basent sur des instances réelles fournies par une compagnie aérienne américaine. À part l’introduction, la revue de littérature et la conclusion, cette thèse comprend trois chapitres principaux dont chacun présente les travaux réalisés pour un objectif de recherche bien précis. Dans le premier objectif, nous proposons en premier temps une extension du problème de construction des rotations des membres d’équipage qui intègre les demandes de vacances du pilote et du copilote au stade du couplage des équipages. Deuxièmement, nous présentons un modèle qui intègre complètement les problèmes de construction des rotations et le problème d’affectation des équipes simultanément pour les pilotes et les copilotes. Pour résoudre ce modèle intégré, nous développons une méthode qui combine la décomposition de Benders et la génération de colonnes. Dans un cas plus général concernant le problème de planification des équipages de ligne aérienne, chaque pilote/copilote a la possibilité de choisir chaque mois un ensemble de vols préférés parmi les vols réguliers. Le deuxième objectif de la thèse consiste à étudier la difficulté d’utiliser la méthode proposée dans le premier objectif lorsque nous considérons un ensemble de vols préférés et de demandes de vacances pour chaque pilote et copilote. Quant au troisième objectif de la thèse, nous considérons le problème de planification d’équipage (pilotes et copilotes) dans un contexte personnalisé où chaque pilote/copilote demande un ensemble de préférences pour des vols spécifiques et des vacances par mois. En effet, nous proposons un modèle intégré qui permet de générer des blocs mensuels personnalisés pour les pilotes et les copilotes simultanément en une seule étape où nous gardons les rotations dans les deux problèmes aussi similaires que possible afin de réduire la propagation des perturbations pendant l’opération. Pour résoudre ce modèle intégré, nous développons une méthode qui combine la relaxation lagrangienne, la génération de colonnes et l’agrégation dynamique des contraintes. Le processus de résolution itère entre le modèle intégré des pilotes et le modèle intégré des copilotes en estimant les effets des décisions du premier problème sur le second problème.----------ABSTRACT: The airline crew scheduling problem consists of determining crew schedules for airline crew members such that all the scheduled flights over a planning horizon (usually a month) are covered and the constraints are satisfied. Due to its complexity, this problem is usually solved in two phases: the crew pairing followed by the crew assignment. A pairing is a sequence of flights, connections, and rests starting and ending at the same crew base. The crew pairing problem consists of determining a minimum-cost set of feasible pairings such that each flight is covered exactly once. In the crew assignment problem, the goal is to construct monthly schedules from these pairings for airline crew members, while respecting all the safety and collective agreement rules. However, finding an optimal global solution via sequential approach may become impossible because the decision domain of the crew assignment problem is reduced by previously made decisions in the crew pairing problem. The main goal of this dissertation is to propose integrated models and approaches to solving the crew scheduling problem for a given set of pilots and copilots simultaneously. We conduct computational experiments on a set of real instances from a major US carrier. In the first essay of this dissertation, first, we propose an extension of the crew pairing problem that incorporates pilot and copilot vacation requests at the crew pairing stage. Second, we introduce a model that completely integrates the crew pairing and crew assignment problems simultaneously for pilots and copilots. To solve this integrated model, we develop a method that combines Benders decomposition and column generation. In a more general case in the airline crew scheduling problem, each pilot and copilot have the option of choosing a set of preferred flights from the scheduled flights per month. In chapter 5, we study the difficulty of using the proposed method in the first essay when we consider a set of preferred flights and vacation requests for each pilot and copilot. In the third essay of this dissertation, we consider the pilot and copilot crew scheduling problems in a personalized context where each pilot and copilot requests a set of preferences flights and vacations per month. We propose a model that completely integrates the crew pairing and personalized assignment problems to generate personalized monthly schedules for a given set of pilots and copilots simultaneously. The proposed model keeps the pairings in the two problems as similar as possible so the propagation of the perturbations during the operation is reduced. To solve this integrated model, we develop an integrated approach that combines alternating Lagrangian decomposition, column generation, and dynamic constraint aggregation

    Optimisation intégrée des rotations et des blocs mensuels personnalisés des équipages en transport aérien

    Get PDF
    Le problème de la construction des horaires d’équipage pour les compagnies aériennes consiste à assigner un groupe d’équipage à un ensemble planifié de segments de vols. Ce problème doit également respecter des règles de travail définies par la convention collective et les autorités du transport aérien. Le problème de la construction des horaires d’équipage a reçu une attention particulière en recherche opérationnelle car après le carburant, le coût des équipages constitue la plus grande dépense des compagnies aériennes. En raison de la grande taille du problème et de la complexité des règles de travail, ce problème est traditionnellement traité en deux étapes qui sont résolues séquentiellement : la construction de rotations et la construction de blocs mensuels. La première construit un ensemble de rotations réalisables à coût minimum afin que chaque vol prévu puisse être réalisé par un équipage. Les rotations réalisables sont celles juxtaposant des vols conformément aux règles de la convention collective entres les employés et la compagnie aérienne. La deuxième étape construit des blocs mensuels pour les membres d’équipage en combinant les rotations trouvées précédemment avec les repos, et d’autres activités. Chaque bloc mensuel doit satisfaire certaines règles définies par le contrat de travail. Les membres de l’équipage sont divisés en deux groupes selon leurs rôles et leurs responsabilités : les personnels du poste de pilotage et les personnels de la cabine des passagers. Les pilotes, les copilotes et les mécaniciens de bord font partie du personnel du poste de pilotage. Le personnel du poste de pilotage est qualifié pour piloter un avion ou une famille d’avions. Le capitaine de cabine et les agents de bord font partie des membres de la cabine des passagers. Par le passé, les chercheurs se sont concentrés sur la réduction des coûts associés au personnel du poste de pilotage car leurs salaires sont plus élevés que ceux des membres de la cabine des passagers. Dans cette thèse, nous nous concentrons uniquement sur le personnel du poste de pilotage. La construction des blocs mensuels varie pour chaque compagnie aérienne. Toutefois, on peut classer les méthodes en deux catégories : la construction des blocs anonymes (bidline) et la construction des blocs personnalisés. Pour les blocs anonymes, les horaires sont construits de manière à couvrir toutes les rotations sans connaître les préférences des employés. Les blocs sont ensuite présentés aux membres d’équipage qui sélectionnent les blocs qu’ils veulent faire. Contrairement aux blocs anonymes, les blocs personnalisés tiennent compte des préférences des membres de l’équipage. La construction de ces blocs se fait selon deux objectifs : le rostering et les blocs personnalisés avec séniorité (preferrential bidding). Le premier maximise la satisfaction globale des membres d’équipage sans considérer la séniorité. Le second priorise la satisfaction des membres ayant le plus d’ancienneté. D’un point de vue historique, la construction des blocs anonymes a été l’approche la plus utilisée par les compagnies aériennes nord-américaines alors que la construction des blocs personnalisés a été plus fréquente en Europe. Cependant, les blocs personnalisés sont aujourd’hui une approche de planification utilisée par de plus de compagnies aériennes nord-américaines car ils sont plus avantageux à la fois pour les membres de l’équipage et les compagnies aériennes. Par le passé, le problème de construction des rotations et le problème de construction des blocs mensuels ont été modélisés indépendamment. Bien que cette approche réduise la complexité du problème, elle ne considère pas les contraintes de construction de blocs mensuels lors de la construction des rotations. Ce faisant, il n’est pas possible de garantir une solution optimale pour tous les membres de l’équipage. Plus récemment, des chercheurs ont commencé à intégrer ces problèmes. Le problème de construction intégrée de rotations et de blocs mensuels anonymes pour les pilotes a été étudié par Saddoune et al. Cependant, au meilleur de nos connaissances, il n’existe pas de littérature sur le problème d’intégration de construction des rotations et des blocs mensuels personnalisés. Le premier objectif de cette thèse est de présenter une revue de la littérature sur le problème de construction des horaires d’équipage en transport aérien. De plus, nous présentons un modèle mathématique et une approche de résolution pour le problème séquentiel de construction des blocs mensuels personnalisés. Au meilleur de notre connaissance, aucun modèle permettant de prendre en compte les préférences des pilotes n’a été introduit dans la littérature. Nous avons également observé que peu de chercheurs comparent leurs méthodes sur les mêmes données. Nous proposons donc un ensemble d’instances ainsi qu’un générateur de préférences qui est disponible en ligne pour des fins de comparaison. Dans le deuxième objectif de cette thèse, nous considérons le problème intégré de construction des rotations et des blocs mensuels personnalisés. Nous proposons un algorithme heuristique qui construit simultanément des horaires mensuels pour les pilotes et copilotes, tout en respectant les préférences personnelles et les contraintes de sécurité. L’algorithme proposé alterne entre les problèmes de construction des horaires des pilotes et des copilotes afin d’obtenir des rotations similaires, même lorsque les blocs mensuels sont différents. De plus, en raison des perturbations qui arrivent souvent durant l’opération, nous nous sommes intéressés à développer un algorithme permettant d’obtenir une solution robuste ; c’est-à-dire que nous minimisons la propagation de la perturbation d’un premier vol aux autres vols et aux autres membres d’équipage. La troisième contribution de cette thèse vise à satisfaire cet aspect. Pour ce faire, nous résolvons le problème de mise à jour des blocs mensuels simultanément pour les pilotes et les copilotes. Nous visons à maintenir les services de vols et les rotations en commun pour les pilotes et les copilotes dans les solutions de mise à jour. Nous proposons ainsi un algorithme heuristique qui alterne entre le problème de mise à jour des horaires mensuels des pilotes et des copilotes. Pour résumer, cette thèse étudie le problème de construction intégrée des blocs mensuels personnalisés pour les membres de l’équipage. Nous nous concentrons à la fois sur la planification et sur la mise à jour des blocs mensuels.----------ABSTRACT : The airline crew scheduling problem assigns a group of crew members to a set of scheduled flights. This scheduling problem should respect also a set of safety regulations and collective conventions. The airline crew scheduling has received special attention in Operations Research because after fuel, the cost of crew members is the second largest cost for airlines. Due to complexity, traditionally researchers divided this problem into two steps which are solved sequentially: crew pairing and crew assignment. The former constructs a set of minimum cost anonymous feasible pairings for covering the scheduled flights while pairing régulations are taken into account. The latter combines the anonymous pairings with vacations, preassigned activities, and rest periods over a planning horizon (usually a month) to form new schedules for crew members while satisfying safety regulations. Crew members are divided into two groups based on their roles and responsibilities: the cockpit crew members and the cabin crew members. Cockpit crew members are composed of the pilot (captain), copilot (first officer), and flight engineer (for large fleets). The cockpit crew members are qualified to fly one or a family of aircraft types. The cabin crew members are the cabin captain and the flight attendants. Because cockpit crew members are paid substantially higher than cabin crew members, most of the literature has focused on cockpit crew members. In this thesis, we also focus on cockpit crew members composed of pilots and copilots. Despite crew pairings problem which always aims at constructing anonymous pairings, there are two general approaches that airlines consider when solving the crew assignment problem: constructing bidline schedules or personalized schedules. Bidline schedules are anonymous schedules for which the crew preferences and needs are not taken into account. After constructing bidline schedules for crew members, the airlines announce them to the crew members and crew members select the bidlines according to seniority order. In contrast to bidline schedules, personalized schedules consider crew member’s preferences and needs for constructing and allocating the schedules. There are two general ways for constructing personalized schedules: rostering and seniority-based. The former favors providing a maximum global satisfaction for crew members and does not take crew members seniority into account. The latter prioritizes satisfaction of more senior crew members to the junior ones. From a historical point of view, bidline scheduling has been the most common approach at North American airlines whereas personalized scheduling has been more common in Europe. However, personalized schedules are now becoming a common scheduling approach at american airlines by offering advantages for both crew members and airlines. Each of the crew pairing problem and crew assignment problem were modeled independently. This traditional sequential approach reduces the complexity of crew scheduling problem but does not guarantee a global optimum solution for crew members because the constraints of monthly schedules are not taken into account when the pairings are being constructed. More recently, researchers have started to study the integration of the crew pairing and crew assignment problems. The problem of integrated bidline scheduling for pilots has been studied by Saddoune et al. However, integrated personalized crew scheduling for pilots and copilots simultaneously has not been the subject of study so far. The first objective of this thesis is to present an extensive review of literature about airline crew scheduling problem. In addition, in the context of sequential scheduling approach, we present a mathematical model and solution approach for personalized pilot assignment problem. To the best of our knowledge, this personalized assignment model that takes into account the pilots preferences has not yet been introduced in the literature. Furthermore, we observed that researchers frequently do not compare their methods on the same data due to the lack of access to common data sets. Therefore, we made all the data sets and crew preference generators available online which will allow other researchers to do so. As the second objective in this thesis, we consider the integrated personalized crew scheduling problem that simultaneously constructs monthly schedules for pilots and copilots while respecting the personal preferences and safety constraints. In addition, we are interested to maintain the robustness of the crew schedules due to the real-life perturbations that arrive while the planned schedules are being operated. At the operational level, the pilots and copilots must have similar pairings when possible to prevent the propagation of delays throughout the schedules. We present a heuristic algorithm that alternates between the pilot and copilot scheduling problems in order to obtain similar pairings even when the monthly schedules are different. In real life, various disruption sources such as weather conditions may result in delaying or canceling the scheduled flights. These delayed or canceled flights will affect the crew schedules. Due to delay propagation, robust crew recovery problem is very significant. As the third contribution of this thesis, we solve the recovery problem simultaneously for pilots and copilots where the planned schedules are constructed using personalized scheduling approach. We aim at keeping the duties and pairings in common during the recovery solution process. This aim is satisfied by considering heuristic algorithm that alternates between pilots and copilots recovery problems. The re-scheduled flights are considered to be given as an input data.To summarize, this thesis studies integrated personalized crew scheduling problem, in both planning and operational level, which simultaneously constructs/recovers monthly schedules for both pilots and copilots

    Optimisation simultanée des rotations et des blocs mensuels des équipages aériens

    Get PDF
    R´esum´e Le probl`eme int´egr´e de la construction des rotations et des blocs mensuels des pilotes consiste `a d´eterminer un ensemble de rotations et de blocs mensuels pour les pilotes tels que chaque segment de vol est couvert par une seule rotation et un seul bloc, et ce, tout en satisfaisant des contraintes suppl´ementaires comme la disponibilit´e des pilotes dans chaque base. Une rotation est une s´equence de vols effectu´ee par un ´equipage durant une p´eriode donn´ee partant et revenant `a la mˆeme base. Un bloc (ou horaire) mensuel est une s´equence de rotations s´epar´ees par des p´eriodes de repos. La construction des rotations et des blocs mensuels doit ˆetre conforme aux r`egles de la s´ecurit´e a´erienne, aux r`egles d’op´eration de la compagnie et aux r`egles contenues dans les conventions collectives entre les employ´es et la compagnie a´erienne. `A part l’introduction, la revue de litt´erature et la conclusion, cette th`ese est compos´ee de trois chapitres principaux dont chacun pr´esente les travaux r´ealis´ees pour un objectif de recherche bien pr´ecis. Ces trois chapitres utilisent les mˆemes instances du probl`eme bas´ees sur des donn´ees r´eelles fournies par une grande compagnie a´erienne am´ericaine. Le probl`eme de construction des rotations se r´esout traditionnellement en trois phases de mani`ere s´equentielle : un probl`eme journalier, un probl`eme hebdomadaire et un probl`eme mensuel. Cette approche interdit la r´ep´etition du mˆeme num´ero de vol dans une rotation. Le premier objectif de cette th`ese est de mettre en ´evidence deux faiblesses de cette approche s´equentielle et proposer `a la place une approche alternative qui permet la r´ep´etition des vols dans une mˆeme rotation. Premi`erement, nous montrons que lorsque l’horaire des vols est irr´egulier, les deux premi`eres phases ne sont qu’une perte de temps et on peut obtenir de meilleures solutions en moins de temps si le probl`eme mensuel est r´esolu directement en utilisant une approche d’horizon fuyant faisant appel `a une m´ethode de g´en´eration de colonnes. En effet, cette approche a permis de diminuer le gras de la solution de 34% en moyenne o`u le gras est une mesure de qualit´e portant sur le pourcentage du temps non travaill´e mais pay´e durant un horizon. Deuxi`emement, mˆeme si l’horaire des vols est compl`etement r´egulier, la qualit´e de la solution est meilleure si le probl`eme hebdomadaire est trait´e directement sans exploiter le probl`eme journalier. En effet, les diff´erents tests ont montr´e qu’une moyenne de 48.8% des rotations contiennent des r´ep´etitions causant une r´eduction moyenne de 16% dans le gras.----------Abstract The integrated crew pairing and crew assignment problem for pilots consists of producing a minimum-cost set of pairings and schedules such that each flight leg is covered once by one pairing and one schedule, and side constraints are satisfied such as pilot availability in each crew base station. A pairing is a sequence of duties separated by rest periods that must start and end at the same crew base. A duty is a sequence of flights separated by connections and ground waiting times, forming a working day for a crew. The construction of pairings and schedules must respect all safety and collective agreement rules. Besides the introduction, literature review and conclusion, this thesis is composed of three main chapters where each one presents the performed work for a specific research objective. These three chapters use the same problem instances based on real-data provided by a major US airline. The crew pairing problem has been traditionally solved in the industry by a heuristic three-phase approach that solves sequentially a daily, a weekly, and a monthly problem. This approach prohibits the repetition of the same flight number in a pairing. The first objective in this thesis is to highlight two weaknesses of the three-phase approach and propose an alternative solution approach that exploits flight number repetitions in pairings. First, when the flight schedule is irregular, we show that better quality solutions can be obtained in less computational times if the first two phases are skipped and the monthly problem is solved directly using a rolling horizon approach based on column generation. In fact, this approach has reduced the solution fat by 34%. The solution fat is a quality measure that shows the percentage of time not worked but paid. Second, even if the flight schedule is completely regular, we show that better quality solutions can be derived by skipping the daily problem phase and solving the weekly problem directly. Indeed, the proportion of pairings with such repetitions represents 48.8% causing a mean reduction in the solution fat by 16%. In practice, both the crew pairing and crew assignment problems are independently modeled and sequentially solved. The use of a sequential approach considerably reduces the complexity of the global problem but produces solutions that may not be conform with airline desires. The second objective in this thesis is to propose a model that fully integrates the crew pairing and crew assignment problems and solve it in a single step. Due to the large size of this integrated model, we propose a solution method that combines a column generation and a dynamic constraint aggregation method. Since the latter method requires a good initial partition, this partition is provided by a set of pairings found with the sequentia

    Trois variantes du problème de rotations pour une approche semi-intégrée de la planification d’horaires de personnel aérien

    Get PDF
    RÉSUMÉ: Les horaires d’équipages aériens sont généralement créés à l’aide d’une procédure séquentielle impliquant la résolution de deux problèmes : le problème de rotations d’équipage (CPP) et le problème d’horaires personnalisés (CRP). Le CPP crée un ensemble de rotations couvrant tous les vols d’une période donnée à coût minimum. Une rotation est une séquence de vols, repositionnements, connexions et repos s’étalant sur un ou plusieurs jours, et qui doit être assignée à un équipage composé de plusieurs membres (pilote, copilote, agent de bord, etc.). Une rotation doit également débuter et se terminer à la même base (aéroport où sont affectés des membres d’équipage), et satisfaire plusieurs contraintes imposées par les autorités, ainsi que par les conventions collectives en place. Le CRP utilise les rotations créées par le CPP afin de construire un horaire personnalisé pour chaque membre d’équipage. Les horaires personnalisés doivent couvrir toutes les rotations et doivent également satisfaire un ensemble de contraintes. Le principal désavantage de cette procédure séquentielle est que l’ensemble de rotations générées par le CPP est généralement inadéquat pour le CRP. Par exemple, certains vols doivent être opérés par un équipage possédant des qualifications spécifiques (e.g. des qualifications de langues). Il est possible que dans la solution du CPP, ces vols soient dispersés dans un grand nombre de rotations, de sorte qu’il soit impossible de créer un horaire respectant toutes les contraintes de qualification. Idéalement, il serait préférable de résoudre un seul problème d’optimisation intégrant la création de rotations et la composition d’horaires personnalisés. Bien que de telles approches aient été proposées dans la littérature, les temps de calcul nécessaires à l’obtention de solutions de qualité sont prohibitifs pour des instances de grande taille. Les approches semi-intégrées permettent de surmonter certaines limites de l’approche séquentielle, en évitant les conséquences négatives des approches intégrées. Ces méthodes sont des variantes de l’approche séquentielle dans lesquelles la formulation mathématique du CPP est enrichie. L’idée est d’inclure dans le CPP certains éléments qui sont traditionnellement traités au niveau du CRP, afin de créer des rotations qui sont mieux adaptées au CRP. Dans cette thèse, nous étudions trois variantes du CPP qui conviennent aux approches semiintégrées. Chacune de ces variantes est définie comme un problème de partitionnement d’ensemble avec contraintes supplémentaires dans lequel les variables de décision principales sont associées à des rotations réalisables. Ces problèmes sont résolus par un algorithme de génération de colonnes qui utilise un problème maître restreint pour sélectionner les rotations et des sous-problèmes pour générer des rotations à ajouter au problème maître restreint. Dans le premier sujet de cette thèse, nous nous intéressons au CPP avec contraintes de base (CPPBC). Les contraintes de base pénalisent le temps de travail excédentaire à chaque base, afin de distribuer équitablement la charge de travail entre les différentes bases. Bien que la plupart des logiciels commerciaux incorporent des contraintes de base dans le CPP, aucune étude scientifique ne s’est penchée sur leur impact sur le processus de résolution du CPP. Nous montrons qu’en présence de contraintes de base assez restrictives, les algorithmes de branchement heuristiques traditionnellement utilisés peinent à obtenir une solution entière de qualité. Ces algorithmes prennent un plus grand nombre de décisions de branchement risquées, ce qui nuit à la qualité des solutions obtenues. Afin de remédier à ce problème, nous développons un algorithme de branchement heuristique, appelé branchement rétrospectif, qui élimine certaines mauvaises décisions de branchement lorsque l’écart relatif entre la meilleure solution fractionnaire et la solution fractionnaire au noeud courant est trop grand, et ce, sans avoir à effectuer de retour en arrière. L’algorithme de branchement rétrospectif est testé sur sept instances hebdomadaires. Nous montrons que le branchement rétrospectif permet d’obtenir des solutions de meilleure qualité qu’avec les autres méthodes de branchement couramment utilisées, en des temps de calcul raisonnables. L’algorithme de branchement rétrospectif est présentement implémenté dans un logiciel commercial de planification aérienne, et a été utilisé afin d’obtenir des solutions de qualité pour des problèmes contenant plusieurs dizaines de milliers de vols par mois. Dans le deuxième article de cette thèse, nous proposons une variante du CPP, appelée CPP avec caractéristiques complexes (CPPCF), qui prend en compte les préférences de vols et de vacances des membres d’équipage, dans le but d’augmenter la satisfaction de ceux-ci envers leurs horaires. Pour ce faire, nous identifions six caractéristiques des rotations en lien avec les préférences des membres d’équipage et qui pourraient être bénéfiques au CRP. Un bonus est accordé aux rotations contenant une ou plusieurs de ces caractéristiques, de manière à favoriser leur présence dans la solution retournée. La méthode de résolution du CPP est adaptée au CPPCF : nous modifions les règles de dominance de l’algorithme d’étiquetage utilisé pour résoudre les sous-problèmes. Cela permet de résoudre les sous-problèmes du CPPCF en des temps raisonnables. L’efficacité de cette méthode est démontrée sur sept instances mensuelles. Nous montrons que les solutions obtenues à l’aide du CPPCF permettent la création d’horaires personnalisés dans lesquels un plus grand nombre de préférences sont accordées, augmentant ainsi la satisfaction des membres d’équipage. Le troisième sujet de cette thèse porte sur les contraintes de langues. Il s’agit de contraintes sur les qualifications linguistiques pour l’équipage de certains vols. Cette recherche est fectuée dans un contexte de création d’horaires pour les agents de bord. Le respect des contraintes de langues est primordial pour les compagnies aériennes qui désirent offrir un service sécuritaire et de qualité. Or, les méthodes actuelles sont inadéquates pour traiter les problèmes contenant un grand nombre de contraintes de langues et peu de membres d’équipage parlant ces langues. En effet, le CPP ne prend pas en considération les contraintes de langues, de sorte que les vols qui possèdent des contraintes de langues similaires se retrouvent distribuées dans un grand nombre de rotations. Nous formulons le CPP avec contraintes de langues (CPPLC), une variante du CPP qui favorise le regroupement de plusieurs vols ayant les mêmes contraintes de langues à l’intérieur d’une rotation. La difficulté principale que pose cette variante est l’explosion combinatoire du nombre de sous-problèmes. Nous mettons de l’avant une stratégie de sélection de sous-problèmes dans laquelle un petit ensemble de sous-problèmes prometteurs est résolu à chaque itération de génération de colonnes. Nous développons également une stratégie d’accélération permettant de diminuer significativement les temps de calcul au début du processus de résolution. Nous montrons que l’utilisation du CPPLC permet de réduire considérablement le nombre de contraintes de langues violées dans les horaires personnalisés. Bien que seules les contraintes de langues soient traitées, la méthode proposée pourrait également s’appliquer à une grande variété de contraintes de qualification, autant pour les agents de bord que pour les pilotes et copilotes.----------ABSTRACT: Aircrew scheduling is usually performed according to a two-step sequential procedure: crew pairing and crew rostering. While the crew pairing problem (CPP) finds a set of pairings that covers the legs of a given period at minimum cost, the crew rostering problem (CRP) uses those pairings in order to create a personalized schedule for each crew member. A pairing is a sequence of legs, deadheads, connections and rests spanning over one or multiple days, and that can be assigned to a crew member. A pairing must also begin and end at the same crew base (airport where crew members are stationed), and comply with many rules imposed by airline authorities as well as collective agreements. The crew schedules must cover all pairings, and are also subject to many regulations. The main drawback of this sequential approach is that the set of pairings produced by the CPP is often ill-suited for the CRP. For instance, the CPP solution might assign too much work to a given base, resulting in an imbalance in the work distribution among the bases. Ideally, both steps would be integrated into a single optimization problem. Even though many such approaches have been proposed in the literature, computing times required to solve those integrated problems are prohibitive, even for small-sized instances. Semi-integrated approaches are designed to overcome some limitations of the sequential approaches, without unduly increasing computing times. The main idea is to solve a variant of the CPP that includes some elements that traditionally belong in the CRP. This enables the CPP to create pairings that are better-suited for the CRP. In this thesis, we study three such CPP variants. Each variant is formulated as a setpartitionning problem with additional constraints, in which the main decision variables are associated with feasible pairings. These problems are solved by a column generation algorithm that uses a restricted master problem to select the pairings and multiple subproblems to generate the pairings to add to the restricted master problem. In the first subject of this thesis, we study the CPP with base constraints (CPPBC). Base constraints penalize excess work performed at each crew base in order to evenly distribute the workload among them. Although most commercial softwares include base constraints in the CPP, no academic research has studied their impact on the existing solution methods. Preliminary tests show that when base constraints are very restrictive, the heuristic branching algorithms traditionally used struggle to find a good-quality integer solution: they take a larger number of risky branching decisions, which negatively impact the quality of the solutions. We develop a new heuristic branching scheme, called retrospective branching, that identifies risky branching decisions in the branch-and-bound tree, and removes poor branching decisions when the gap between the current and the best fractional solution becomes too large, without backtracking. The proposed method is tested on seven weekly instances. We show that the retrospective branching algorithm produces solutions of better quality than with the other commonly used branching methods, in reasonable computing times. The retrospective branching is currently implemented in a commercial crew scheduling software, and has been used to obtain good-quality solutions to monthly instances containing tens of thousands of legs. In the second subject of this thesis, we propose a variant of the CPP, called the CPP with complex features (CPPCF) which takes into account legs and vacations preferences of crew members, with the aim of increasing the number of preferences awarded in the CRP, and thus, crew member satisfaction towards their schedule. We identify six pairing features related to those preferences, which could be beneficial to the CRP. Pairings containing one or more of those features are granted a bonus in order to promote their presence in the solutions. The solution method for the CPP is adapted to the CPPCF. We modify the dominance rules of the labeling algorithm used to solve the subproblems, based on the values of new state resources. The proposed method is tested on seven monthly instances. We show that using the CPPCF allows for a significantly higher number of awarded preferences in the CRP. The third subject of this thesis deals with language constraints — constraints on the language qualifications of the crew operating some legs. Satisfying these constraints is essential for airlines, which would otherwise have to pay high penalties, or even cancel some legs. Current methods are inadequate to deal with problems containing a large number of language constraints and few crew members with language qualifications. This is because the CPP does not account for language constraints, resulting in a spreading of the legs with language constraints among many pairings. We study this problem in the context of cabin crew scheduling. We formulate a CPP variant, called CPP with language constraints (CPPLC), which favors the grouping of legs with similar language constraints within the same pairing. The main challenge in solving the CPPLC is the combinatorial explosion in the number of subproblems. We put forward a subproblem selection strategy in which only a fraction of these subproblems are solved at each column generation iteration. We show that taking into account the language constraints in the CPP allows for a significant reduction of the number of language constraint violations in the CRP solutions. Although this study was conducted only for language constraints, the proposed method can be applied to many types of qualification constraints for cabin crews as well as pilots and copilots

    Agrégation dynamique de contrainte pour la construction de blocs mensuels personnalisés dans un contexte d'équité

    Get PDF
    Terminologie -- Vue d'ensemble de la planification des opérations en transport aérien -- Planification des vols -- Assignation de la flotte -- Construction des rotations d'avion -- Construction des rotations d'équipage -- Construction des horaires mensuels -- Gestion des perturbations -- Définition détaillée du problème de construction des blocs mensuels personalisés avec équité -- Contraintes locales -- Contraintes globales -- Fonction objectif -- Objectifs du mémoire -- Modes de construction des horaires mensuels -- Bidline -- Rostering -- preferential bidding -- Méthodes de résolution -- Métaheuristiques -- Modèle de partionnement d'ensemble -- Approche par lignes -- Approche par colonnes -- Approches réseau -- Algorithme de recherche taboue -- Heuristiques -- Algorithme utilisé -- Description générale de la méthode -- Techniques d'implantation -- Approche générale -- Espace des solutions -- Fonction objectif -- Calcul par incrément de la fonction objectif -- Voisinages -- Solution initiale -- Liste taboue -- Génération de colonnes et agrégation dynamique de contraintes -- Modélisation du problème -- Une approximation du problème -- Génération de colonnes -- Modélisation du sous problème -- Réseau personnalisé -- Calcul des bornes pour les niveaux de flexibilité -- Résolution des sous problèmes -- Modèle avec la fonction objectif tronquée -- Agrégation dynamique de contraintes -- Description de la méthode -- Application de MPDCA au CBMPE -- Expérimentation numériques -- Instances traités -- Résultats de l'algorithme tabou -- Résultat de la génération de colonnes -- Modèle avec fonction en escalier -- Modèle avec fonction tronquée -- Résultats de l'agrégation dynamique

    FLIGHT RISK MANAGEMENT AND CREW RESERVE OPTIMIZATION

    Get PDF
    There are two key concerns in the development process of aviation. One is safety, and the other is cost. An airline running with high safety and low cost must be the most competitive one in the market. This work investigates two research efforts respectively relevant to these two concerns. When building support of a real time Flight Risk Assessment and Mitigation System (FRAMS), a sequential multi-stage approach is developed. The whole risk management process is considered in order to improve the safety of each flight by integrating AHP and FTA technique to describe the framework of all levels of risks through risk score. Unlike traditional fault tree analysis, severity level, time level and synergy effect are taken into account when calculating the risk score for each flight. A risk tree is designed for risk data with flat shape structure and a time sensitive optimization model is developed to support decision making of how to mitigate risk with as little cost as possible. A case study is solved in reasonable time to approve that the model is practical for the real time system. On the other hand, an intense competitive environment makes cost controlling more and more important for airlines. An integrated approach is developed for improving the efficiency of reserve crew scheduling which can contribute to decrease cost. Unlike the other technique, this approach integrates the demand forecasting, reserve pattern generation and optimization. A reserve forecasting tool is developed based on a large data base. The expected value of each type of dropped trip is the output of this tool based on the predicted dropping rate and the total scheduled trips. The rounding step in current applied methods is avoided to keep as much information as possible. The forecasting stage is extended to the optimization stage through the input of these expected values. A novel optimization model with column generation algorithm is developed to generate patterns to cover these expected level reserve demands with minimization to the total cost. The many-to-many covering mode makes the model avoid the influence of forecasting errors caused by high uncertainty as much as possible

    Presentations from the MIT/Industry Cooperative Research Program Annual Meeting, 1991

    Get PDF
    Cover titleMay 1991Includes bibliographical reference

    Robust crew pairing for managing extra flights /

    Get PDF
    The airline industry encounters many optimization problems such as scheduling flights, assigning the fleet, scheduling the crew. Among them, the crew scheduling problem is the most studied one. The main reason is that the crew cost is one of the largest components of the operational cost for an airline company. Therefore, there are many models proposed in the literature to find a cost efficient crew schedule. Most of those models divide the crew scheduling problem into two separate problems, namely the crew pairing and the crew assignment problems. The crew pairing problem that we study here aims at finding the least costly subset of pairings, which cover the scheduled flights. Although there are many approaches to solve the crew pairing problem, most of them assume no disruptions during the operation. However disruptions due to weather conditions, maintenance problems, and so on are common problems leading to higher operational crew cost in practice. These kinds of disruptions result in delaying or canceling some scheduled flights. Another disruption that local airline companies face is adding an extra flight to predetermined (regular) flight schedule. In this study, we propose a model that provides robust crew pairing schedule in the case of adding an extra flight to the regular flight schedule. Two solution approaches are along with the mathematical model are proposed. The objective of the proposed model is to maximize the total number of solutions, while maintaining the increase in the crew cost at an acceptable level. A crew pairing problem is then solved by both the proposed model and the conventional model. Finally, computational experiments are conducted to demonstrate the benefits of the proposed model

    Optimization Approaches for Solving Large-Scale Personnel Scheduling Problems

    Full text link
    Personnel scheduling is one of the most critical components in logistical planning for many practical areas, particularly in transportation, public services, and clinical operations. Because manpower is both an expensive and scarce resource, even a tiny improvement in utilization can provide huge expense savings for businesses. Additionally, a slightly better assignment schedule of the involved professionals can significantly increase their work satisfaction, which can in turn greatly improve the quality of the services customers or patients receive. However, practical personnel scheduling problems (PSPs) are hard to solve because modeling all of the complicated and nuanced requirements and rules is challenging. Moreover, since an iterative construction process may be necessary for handling the multiple-criteria or ill-defined objective nature of many PSPs, the model is expected to be solved in a short time while providing high-quality solutions, despite its large size and complexity. In this dissertation, we propose new models and solution approaches to address these challenges. We study in total three real-world PSPs. We first consider the crew pairing construction for a cargo airline. Each crew pairing is a sequence of flights assigned to a specific line/bid crew to operate in practice. Unlike traditional passenger aviation, due to the cargo airline's underlying network, each crew pairing will specify a complete flying schedule for the assigned crew over the entire planning horizon. Consequently, an extra and unique set of requirements must be incorporated into the construction process. We solve the problem using a delayed column generation framework. We develop a restricted shortest path model to incorporate the entire set of complicated requirements simultaneously and solve it using a labeling algorithm accelerated by a handful of proposed strategies. Computational experiments show that our approach can solve the crew pairing problem in a short time, while almost always delivering an optimal solution. Second, we consider an extension of the previous cargo crew scheduling problem, where a "break" is allowed to take place in the "middle" of each crew pairing. This break feature, working as a special type of conventional deadheading, is expected to significantly increase the flight coverage for practical deployment. However, incorporating this feature will result in an extremely dense underlying network, which introduces new computational challenges. To address this issue, we propose a bidirectional labeling based arc selection approach, which only needs to work on a tiny sub-network each time but can still guarantee the exactness of the delayed column generation process. We demonstrate through real-world instances that our proposed approach can solve this relaxed problem extension in a very short time and the resulting flight coverage will increase by over 30%. Finally, we study a medical resident annual block scheduling problem. We need to assign residents to perform services at different clinical units during each time period across the academic year so that the residents receive appropriate training while the hospital gets staffed sufficiently. We propose a two-stage partial fixing solution framework to address the long runtime issue caused by traditional approaches. A network-based model is also developed to provide a high-quality service selection to initiate this two-stage framework. Experiments using inputs from our clinical collaborator show that our approach can speed up the schedule construction at least 5 times for all instances and even over 100 times for some huge-size ones compared to a widely-used traditional approach.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169758/1/jhguo_1.pd
    corecore