60,514 research outputs found

    Whole-Body MPC for a Dynamically Stable Mobile Manipulator

    Full text link
    Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this paper, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction as one optimization problem for an inherently unstable robot. The optimization is performed using a Model Predictive Control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening

    Automatic annotation of tennis games: An integration of audio, vision, and learning

    Get PDF
    Fully automatic annotation of tennis game using broadcast video is a task with a great potential but with enormous challenges. In this paper we describe our approach to this task, which integrates computer vision, machine listening, and machine learning. At the low level processing, we improve upon our previously proposed state-of-the-art tennis ball tracking algorithm and employ audio signal processing techniques to detect key events and construct features for classifying the events. At high level analysis, we model event classification as a sequence labelling problem, and investigate four machine learning techniques using simulated event sequences. Finally, we evaluate our proposed approach on three real world tennis games, and discuss the interplay between audio, vision and learning. To the best of our knowledge, our system is the only one that can annotate tennis game at such a detailed level

    IMPLEMENTATION OF A LOCALIZATION-ORIENTED HRI FOR WALKING ROBOTS IN THE ROBOCUP ENVIRONMENT

    Get PDF
    This paper presents the design and implementation of a human–robot interface capable of evaluating robot localization performance and maintaining full control of robot behaviors in the RoboCup domain. The system consists of legged robots, behavior modules, an overhead visual tracking system, and a graphic user interface. A human–robot communication framework is designed for executing cooperative and competitive processing tasks between users and robots by using object oriented and modularized software architecture, operability, and functionality. Some experimental results are presented to show the performance of the proposed system based on simulated and real-time information. </jats:p

    The Cosmic Background Imager

    Get PDF
    Design and performance details are given for the Cosmic Background Imager (CBI), an interferometer array that is measuring the power spectrum of fluctuations in the cosmic microwave background radiation (CMBR) for multipoles in the range 400 < l < 3500. The CBI is located at an altitude of 5000 m in the Atacama Desert in northern Chile. It is a planar synthesis array with 13 0.9-m diameter antennas on a 6-m diameter tracking platform. Each antenna has a cooled, low-noise receiver operating in the 26-36 GHz band. Signals are cross-correlated in an analog filterbank correlator with ten 1 GHz bands. This allows spectral index measurements which can be used to distinguish CMBR signals from diffuse galactic foregrounds. A 1.2 kHz 180-deg phase switching scheme is used to reject cross-talk and low-frequency pick-up in the signal processing system. The CBI has a 3-axis mount which allows the tracking platform to be rotated about the optical axis, providing improved (u,v) coverage and a powerful discriminant against false signals generated in the receiving electronics. Rotating the tracking platform also permits polarization measurements when some of the antennas are configured for the orthogonal polarization.Comment: 14 pages. Accepted for publication in PASP. See also http://www.astro.caltech.edu/~tjp/CBI

    Tracking a table tennis ball for umpiring purposes

    Get PDF
    This study investigates tracking a table-tennis ball rapidly from video captured using low-cost equipment for umpiring purposes. A number of highly efficient algorithms have been developed for this purpose. The proposed system was tested using sequences capture from real match scenes. The preliminary results of experiments show that accurate and rapid tracking can be achieved even under challenging conditions, including occlusion and colour merging. This work can contribute to the development of an automatic umpiring system and also has the potential to provide amateur users open access to a detection tool for fast-moving, small, round objects

    Affordable interactive virtual reality system for the Dynamic Hip Screw surgery training in vitro

    Get PDF
    Interactive virtual reality systems provide safe and cost-effective training environment to improve the technical skills and competence of surgeons. The trainees can have as many practice sessions, without need to the trainer all the time, before even start carrying out the procedure on any real patient. In this paper, we present an affordable interactive virtual reality system for the Dynamic Hip Screw (DHS) surgery training in vitro, through 3D tracking. The system facilitates a safe (in vitro / off patient) training to improve the cognitive coordination of trainees and junior surgeons, in particular the Hands, Eyes and Brain coordination. The system is based on very cheap commercial off-the-shelf (COT) components, which are very affordable, and needs minimum setup effort and knowledge. It also provides a range of visual and quantitative feedback information and measures, such as position, orientation, insertion point, and depth of drilling. It is envisaged that improving this level of coordination, through the training system, will contribute to reducing the failure rate of the DHS procedure. This means better treatment for patients and less costs for the Health services systems (e.g. UK's NHS system)

    A fast and robust hand-driven 3D mouse

    Get PDF
    The development of new interaction paradigms requires a natural interaction. This means that people should be able to interact with technology with the same models used to interact with everyday real life, that is through gestures, expressions, voice. Following this idea, in this paper we propose a non intrusive vision based tracking system able to capture hand motion and simple hand gestures. The proposed device allows to use the hand as a "natural" 3D mouse, where the forefinger tip or the palm centre are used to identify a 3D marker and the hand gesture can be used to simulate the mouse buttons. The approach is based on a monoscopic tracking algorithm which is computationally fast and robust against noise and cluttered backgrounds. Two image streams are processed in parallel exploiting multi-core architectures, and their results are combined to obtain a constrained stereoscopic problem. The system has been implemented and thoroughly tested in an experimental environment where the 3D hand mouse has been used to interact with objects in a virtual reality application. We also provide results about the performances of the tracker, which demonstrate precision and robustness of the proposed syste
    • …
    corecore