238 research outputs found

    Optimization Based Self-localization for IoT Wireless Sensor Networks

    Get PDF
    In this paper we propose an embedded optimization framework for the simultaneous self-localization of all sensors in wireless sensor networks making use of range measurements from ultra-wideband (UWB) signals. Low-power UWB radios, which provide time-of-arrival measurements with decimeter accuracy over large distances, have been increasingly envisioned for realtime localization of IoT devices in GPS-denied environments and large sensor networks. In this work, we therefore explore different non-linear least-squares optimization problems to formulate the localization task based on UWB range measurements. We solve the resulting optimization problems directly using non-linear-programming algorithms that guarantee convergence to locally optimal solutions. This optimization framework allows the consistent comparison of different optimization methods for sensor localization. We propose and demonstrate the best optimization approach for the self-localization of sensors equipped with off-the-shelf microcontrollers using state-of-the-art code generation techniques for the plug-and-play deployment of the optimal localization algorithm. Numerical results indicate that the proposed approach improves localization accuracy and decreases computation times relative to existing iterative methods

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Exploiting temporal stability and low-rank structure for localization in mobile networks

    Full text link

    Controlling Interferences in Smart Building IoT Networks using Machine Learning

    Get PDF

    Policy Rollout Action Selection in Continuous Domains for Sensor Path Planning

    Get PDF

    Energy Efficient Cooperative Mobile Sensor Network

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    ALADIN-α—An open-source MATLAB toolbox for distributed non-convex optimization

    Get PDF
    This article introduces an open-source software for distributed and decentralized non-convex optimization named ALADIN-α. ALADIN-α is a MATLAB implementation of tailored variants of the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm. It is user interface is convenient for rapid prototyping of non-convex distributed optimization algorithms. An improved version of the recently proposed bi-level variant of ALADIN is included enabling decentralized non-convex optimization with reduced information exchange. A collection of examples from different applications fields including chemical engineering, robotics, and power systems underpins the potential of ALADIN-α
    corecore