10,273 research outputs found

    A Comprehensive Three-Dimensional Model of the Cochlea

    Get PDF
    The human cochlea is a remarkable device, able to discern extremely small amplitude sound pressure waves, and discriminate between very close frequencies. Simulation of the cochlea is computationally challenging due to its complex geometry, intricate construction and small physical size. We have developed, and are continuing to refine, a detailed three-dimensional computational model based on an accurate cochlear geometry obtained from physical measurements. In the model, the immersed boundary method is used to calculate the fluid-structure interactions produced in response to incoming sound waves. The model includes a detailed and realistic description of the various elastic structures present. In this paper, we describe the computational model and its performance on the latest generation of shared memory servers from Hewlett Packard. Using compiler generated threads and OpenMP directives, we have achieved a high degree of parallelism in the executable, which has made possible several large scale numerical simulation experiments that study the interesting features of the cochlear system. We show several results from these simulations, reproducing some of the basic known characteristics of cochlear mechanics.Comment: 22 pages, 5 figure

    Signal coverage approach to the detection probability of hypothetical extraterrestrial emitters in the Milky Way

    Full text link
    The lack of evidence for the existence of extraterrestrial life, even the simplest forms of animal life, makes it is difficult to decide whether the search for extraterrestrial intelligence (SETI) is more a high-risk, high-payoff endeavor than a futile attempt. Here we insist that even if extraterrestrial civilizations do exist and communicate, the likelihood of detecting their signals crucially depends on whether the Earth lies within a region of the galaxy covered by such signals. By considering possible populations of independent emitters in the galaxy, we build a statistical model of the domain covered by hypothetical extraterrestrial signals to derive the detection probability that the Earth is within such a domain. We show that for general distributions of the signal longevity and directionality, the mean number of detectable emitters is less than one even for detection probabilities as large as 50\%, regardless of the number of emitters in the galaxy.Comment: 9 pages, 5 figure

    A data-driven discrete elastic rod model for shells and solids

    Full text link
    Les structures en forme de tige sont omniprésentes dans le monde aujourd'hui. Désormais, prédire avec précision leur comportement pour l'ingénierie et les environnements virtuels est indispensable pour de nombreuses industries, notamment l'infographie, l'animation par ordinateur et la conception informatique. Dans ce mémoire, nous explorons un nouveau modèle de calcul pour les tiges élastiques qui exploite les données de simulation pour reproduire les effets de coque et de solide présents dans les tiges qui brisent les hypothèses de la théorie classique de la tige de Kirchhoff, présentant ainsi une voie d'amélioration possible pour de nombreux états de l'art techniques. Notre approche consiste à prendre un ensemble de données de simulations à partir de solides volumétriques ou de coques pour former un nouveau modèle d'énergie définie positive polynomiale d'ordre élevé pour une tige élastique. Cette nouvelle énergie élargit la gamme des comportements des matériaux qui peuvent être modélisés pour la tige, permettant ainsi de capturer une plus large gamme de phénomènes. Afin de proposer et tester ce modèle, nous concevons un pipeline expérimental pour tester les limites de la théorie linéaire des tiges et étudier les géométries d'interface entre les cas coque à tige et volume à coque pour observer les effets d'un modèle de matériau non linéaire et une section transversale non elliptique dans la déformation de la tige. Nous étudions également la relation entre la courbure de la tige et la déformation de la section transversale et la courbure pour introduire une modification sur le terme de flexion de l'énergie. Cela nous permet de reproduire à la fois le comportement de flexion asymétrique présent dans les poutres volumétriques minces et les poutres à coque avec des sections transversales non convexes. Des suggestions pour de nouvelles améliorations des modèles et des techniques expérimentales sont également données.Rod-like structures are ubiquitous in the world today. Henceforth accurately predicting their behavior for engineering and virtual environments are indispensable for many industries including computer graphics, computer animation, and computational design. In this thesis we explore a new computational model for elastic rods that leverages simulation data to reproduce shell and solid-like effects present in rods that break the assumptions of the classical Kirchhoff rod theory, thus presenting a possible improvement avenue to many states-of-the-art techniques. Our approach consists of taking a data set of simulations from both volumetric solids or shells to train a novel high-order polynomial positive-definite energy model for an elastic rod. This new energy increases the range of material behaviors that can be modeled for the rod, thus allowing for a larger range of phenomena to be captured. In order to propose and test this model, we design an experimental pipeline to test the limits of the linear theory of rods and investigate the interface geometries between the Shell-Rod and Volume-Shell cases to observe the effects of a nonlinear material model and a non-elliptical cross-section in the rod deformation. We also investigate the relation between rod curvature and deformation of the cross-section and curvature to introduce a modification on the bending term of the energy. This allows us to reproduce both the asymmetric bending behavior present in thin volumetric solid and shell beams with non-convex cross-sections. Suggestions for further improvements in models and experimental techniques are also given

    Neural Point-based Volumetric Avatar: Surface-guided Neural Points for Efficient and Photorealistic Volumetric Head Avatar

    Full text link
    Rendering photorealistic and dynamically moving human heads is crucial for ensuring a pleasant and immersive experience in AR/VR and video conferencing applications. However, existing methods often struggle to model challenging facial regions (e.g., mouth interior, eyes, hair/beard), resulting in unrealistic and blurry results. In this paper, we propose {\fullname} ({\name}), a method that adopts the neural point representation as well as the neural volume rendering process and discards the predefined connectivity and hard correspondence imposed by mesh-based approaches. Specifically, the neural points are strategically constrained around the surface of the target expression via a high-resolution UV displacement map, achieving increased modeling capacity and more accurate control. We introduce three technical innovations to improve the rendering and training efficiency: a patch-wise depth-guided (shading point) sampling strategy, a lightweight radiance decoding process, and a Grid-Error-Patch (GEP) ray sampling strategy during training. By design, our {\name} is better equipped to handle topologically changing regions and thin structures while also ensuring accurate expression control when animating avatars. Experiments conducted on three subjects from the Multiface dataset demonstrate the effectiveness of our designs, outperforming previous state-of-the-art methods, especially in handling challenging facial regions

    Equine body weight estimation using three-dimensional images

    Get PDF
    Includes bibliographical references.2015 Summer.Accurately estimating the body weight (BW) of a horse is important in order to make appropriate management and treatment decisions. Most field equine veterinarians and experienced equine people, however, visually estimate BW because large animal scales are impractical for field use due to the weight (>80 kg), size (length >200 cm), and cost (>$1,000). There are some alternative BW estimation methods such as a weight tape or BW estimation using a combination of heart girth and body length measurements. These methods, however, have 5 - 15% or even higher margin of error. According to human studies, there is a high correlation between BW and body volume (BV). Correlation coefficient (R) between these two variables is 0.996-0.998. Our study was designed to develop methods to estimate the BW of horses by using 3D image based BV measurement. 3D imaging technology allows easy and accurate measurement of diverse indices of an object, including the volume. Recent development of Structure-light 3D scanning technology allows 3D scanning of an object as large as 3 by 3 square meter in a short time. In this study, 3D images of 22 and 11 horses were obtained by using 3D scanning (3DScan) and photogrammetry (2Dto3D), respectively. BV and trunk volume (TV) of the horses were measured from the obtained 3D images. Measurements of BW using five conventional methods (visual estimation, 2 weight tapes (Purina, Shell), estimated BW by using heart girth and body length (Carroll’s formula), and a large animal scale) were also conducted, and the data of body condition score (BCS), sex, coat color, and coat type of the horses were collected. Linear regression models to estimate the BW of the horse based on the volume and other independent variables were developed using regression model stepwise selection procedures (P<0.05). Variables selected in 3DScan method were BV, sex, and coat type, and, in 2Dto3D method, BV (TV) was selected. The coefficient of determination of the developed regression models were 0.95 and 0.78-0.82, respectively, and the average percent errors of the predicted BW compared to the true BW of horses were 2.07 % and 2.67 %, respectively. The accuracy of the 3DScan method was significantly more accurate than WT, Carroll’s formual, and VE (P<0.05). 3D image based BW measurement method had higher accuracy and convenience compared to conventional alternative BW measuring methods. Accurate and easy determination of BW using 3D images will allow for regular BW measurement in the field and allow optimal equine health management by equine stakeholders and practitioners. The 3D images obtained in this study were highly detailed. Further graphical analysis of the obtained 3D images will make it possible to use this technology on automatic evaluation of body condition score, equine conformation evaluation, breed registration, and the study of pharmacokinetics and dynamics of newly developed drugs. This research findings may also have utility for application to wild or zoo animals such as the elephant, rhinoceros, or even the tiger where hands on collection of body weight would be challenging

    Estimation of the quasi-static Young’s modulus of the rat eardrum using a pressurization method

    Get PDF
    Accurate estimates of the quasi-static Young\u27s modulus of the eardrum are important for finite-element (FE) modeling of clinical procedures such as tympanometry or myringotomy. Tympanometry is a medical examination used to test the middle ear condition by creating variations of air pressure in the ear canal. Myringotomy is a surgical procedure in which a tiny incision is created in the eardrum, so as to relieve pressure caused by the excessive buildup of fluid. Although a few authors have reported estimates of the quasi-static Young\u27s modulus, simplifying assumptions in the analytical approaches may raise questions as to the accuracy of the various methodologies. The objective of this project is to develop a method for estimating the quasi-static Young\u27s modulus of the rat eardrum from pressurized shape measurements made using Fourier transform profilometry and optimization of a FE model. First the technique was validated on a synthetic membrane with properties similar to the eardrum. As a synthetic membrane we used five soft contact lenses. A pressurization system was used to apply quasi­ static pressures up to 4 kPa to each contact lens. The resting and deformed shapes of each lens were measured using a Fourier transform profilometer, a non-contacting optical device for shape measurements. A FE model was constructed for each contact lens from the resting shape data, and the Golden-Section optimization technique was used to automatically find the Young\u27s modulus of the contact lens model. The average value estimated for the contact lenses was 1.33 ± 0.02 MPa which is within the range of values reported for this type of contact lens (1.2 to 1.4 MPa). Finally after technique validation, measurements were made on six rat eardrums with immobilized ossicular chains. The same procedure as for the contact lens was iii used to measure the eardrum Young\u27s modulus. For the six eardrum samples, an average value of 22.8 ± 1.5 MPa was obtained for the Young\u27s modulus, which is comparable to values found in the literature. Moreover, the results are repeatable as indicated by the low standard deviation

    Functional Classification of Skeletal Muscle Networks. I. Normal Physiology

    Get PDF
    Extensive measurements of the parts list of human skeletal muscle through transcriptomics and other phenotypic assays offer the opportunity to reconstruct detailed functional models. Through integration of vast amounts of data present in databases and extant knowledge of muscle function combined with robust analyses that include a clustering approach, we present both a protein parts list and network models for skeletal muscle function. The model comprises the four key functional family networks that coexist within a functional space; namely, excitation-activation family (forward pathways that transmit a motoneuronal command signal into the spatial volume of the cell and then use Ca2+ fluxes to bind Ca2+ to troponin C sites on F-actin filaments, plus transmembrane pumps that maintain transmission capacity); mechanical transmission family (a sophisticated three-dimensional mechanical apparatus that bidirectionally couples the millions of actin-myosin nanomotors with external axial tensile forces at insertion sites); metabolic and bioenergetics family (pathways that supply energy for the skeletal muscle function under widely varying demands and provide for other cellular processes); and signaling-production family (which represents various sensing, signal transduction, and nuclear infrastructure that controls the turn over and structural integrity and regulates the maintenance, regeneration, and remodeling of the muscle). Within each family, we identify subfamilies that function as a unit through analysis of large-scale transcription profiles of muscle and other tissues. This comprehensive network model provides a framework for exploring functional mechanisms of the skeletal muscle in normal and pathophysiology, as well as for quantitative modeling

    ESTIMATION OF THE ORTHOTROPIC ELASTIC PROPERTIES OF THE RAT EARDRUM

    Get PDF
    Finite-element (FE) models of the eardrum have been developed to understand its impedance-matching function. Modeling accuracy depends on the assumed elastic properties. Although the eardrum is an orthotropic elastic structure, for simplicity, most investigators have measured the eardrum’s elastic properties while assuming it is isotropic. No data are available in the literature on the eardrum’s orthotropic elastic properties. In this work, existing indentation-based and pressurization-based methods were extended for estimating the orthotropic elastic properties of the eardrum in situ. For the pressurization-based method, an accuracy in excess of 90% is achieved when the signal-to-noise ratio (SNR) is 2 or greater, while an SNR of 200 or greater is required for the indentation-based method. The indentation-based method was applied to the rat eardrum for which measurements were available, yielding average values of Ex =23.39 ± 1.55 MPa, Ey = 58.67 ± 4.16 MPa, and Gxy = 35.56 ± 3.29 MPa
    • …
    corecore