59 research outputs found

    Computing and deflating eigenvalues while solving multiple right hand side linear systems in Quantum Chromodynamics

    Full text link
    We present a new algorithm that computes eigenvalues and eigenvectors of a Hermitian positive definite matrix while solving a linear system of equations with Conjugate Gradient (CG). Traditionally, all the CG iteration vectors could be saved and recombined through the eigenvectors of the tridiagonal projection matrix, which is equivalent theoretically to unrestarted Lanczos. Our algorithm capitalizes on the iteration vectors produced by CG to update only a small window of vectors that approximate the eigenvectors. While this window is restarted in a locally optimal way, the CG algorithm for the linear system is unaffected. Yet, in all our experiments, this small window converges to the required eigenvectors at a rate identical to unrestarted Lanczos. After the solution of the linear system, eigenvectors that have not accurately converged can be improved in an incremental fashion by solving additional linear systems. In this case, eigenvectors identified in earlier systems can be used to deflate, and thus accelerate, the convergence of subsequent systems. We have used this algorithm with excellent results in lattice QCD applications, where hundreds of right hand sides may be needed. Specifically, about 70 eigenvectors are obtained to full accuracy after solving 24 right hand sides. Deflating these from the large number of subsequent right hand sides removes the dreaded critical slowdown, where the conditioning of the matrix increases as the quark mass reaches a critical value. Our experiments show almost a constant number of iterations for our method, regardless of quark mass, and speedups of 8 over original CG for light quark masses.Comment: 22 pages, 26 eps figure

    An Optimized and Scalable Eigensolver for Sequences of Eigenvalue Problems

    Get PDF
    In many scientific applications the solution of non-linear differential equations are obtained through the set-up and solution of a number of successive eigenproblems. These eigenproblems can be regarded as a sequence whenever the solution of one problem fosters the initialization of the next. In addition, in some eigenproblem sequences there is a connection between the solutions of adjacent eigenproblems. Whenever it is possible to unravel the existence of such a connection, the eigenproblem sequence is said to be correlated. When facing with a sequence of correlated eigenproblems the current strategy amounts to solving each eigenproblem in isolation. We propose a alternative approach which exploits such correlation through the use of an eigensolver based on subspace iteration and accelerated with Chebyshev polynomials (ChFSI). The resulting eigensolver is optimized by minimizing the number of matrix-vector multiplications and parallelized using the Elemental library framework. Numerical results show that ChFSI achieves excellent scalability and is competitive with current dense linear algebra parallel eigensolvers.Comment: 23 Pages, 6 figures. First revision of an invited submission to special issue of Concurrency and Computation: Practice and Experienc
    • …
    corecore