159 research outputs found

    A review of routing protocols in wireless body area networks

    Full text link
    Recent technological advancements in wireless communication, integrated circuits and Micro-Electro-Mechanical Systems (MEMs) has enabled miniaturized, low-power, intelligent, invasive/ non-invasive micro and nano-technology sensor nodes placed in or on the human body for use in monitoring body function and its immediate environment referred to as Body Area Networks (BANs). BANs face many stringent requirements in terms of delay, power, temperature and network lifetime which need to be taken into serious consideration in the design of different protocols. Since routing protocols play an important role in the overall system performance in terms of delay, power consumption, temperature and so on, a thorough study on existing routing protocols in BANs is necessary. Also, the specific challenges of BANs necessitates the design of new routing protocols specifically designed for BANs. This paper provides a survey of existing routing protocols mainly proposed for BANs. These protocols are further classified into five main categories namely, temperature based, cross-layer, cluster based, cost-effective and QoS-based routing, where each protocol is described under its specified category. Also, comparison among routing protocols in each category is given. © 2013 ACADEMY PUBLISHER

    TAEO-A thermal aware & energy optimized routing protocol for wireless body area networks

    Get PDF
    Wireless Body Area Networks (WBANs) are in the spotlight of researchers and engineering industries due to many applications. Remote health monitoring for general as well as military purposes where tiny sensors are attached or implanted inside the skin of the body to sense the required attribute is particularly prominent. To seamlessly accomplish this procedure, there are various challenges, out of which temperature control to reduce thermal effects and optimum power consumption to reduce energy wastage are placed at the highest priority. Regular and consistent operation of a sensor node for a long-time result in a rising of the temperature of respective tissues, where it is attached or implanted. This temperature rise has harmful effects on human tissues, which may lead to the tissue damage. In this paper, a Temperate Aware and Energy Optimized (TAEO) routing protocol is proposed that not only deals with the thermal aspects and hot spot problem, but also extends the stability and lifetime of a network. Analytical simulations are conducted, and the results depict better performance in terms of the network lifetime, throughput, energy preservation, and temperature control with respect to state of the art WBAN protocols

    Multi-constrained mechanism for intra-body area network quality-of-service aware routing in wireless body sensor networks

    Get PDF
    Wireless Body Sensor Networks (WBSNs) have witnessed tremendous research interests in a wide range of medical and non-medical fields. In the delaysensitive application scenarios, the critical data packets are highly delay-sensitive which require some Quality-of-Service (QoS) to reach the intended destinations. The categorization of data packets and selection of poor links may have detrimental impacts on overall performance of the network. In WBSN, various biosensors transmit the sensed data towards a destination for further analysis. However, for an efficient data transmission, it is very important to transmit the sensed data towards the base station by satisfying the QoS multi-constrained requirements of the healthcare applications in terms of least end-to-end delay and high reliability, throughput, Packet Delivery Ratio (PDR), and route stability performance. Most of the existing WBSN routing schemes consider traffic prioritization to solve the slot allocation problem. Consequently, the data transmission may face high delays, packet losses, retransmissions, lack of bandwidth, and insufficient buffer space. On the other hand, an end-to-end route is discovered either using a single or composite metric for the data transmission. Thus, it affects the delivery of the critical data through a less privileged manner. Furthermore, a conventional route repair method is considered for the reporting of broken links which does not include surrounding interference. As such, this thesis presents the Multi-constrained mechanism for Intra- Body Area Network QoS aware routing (MIQoS) with Low Latency Traffic Prioritization (LLTP), Optimized Route Discovery (ORD), and Interference Adaptive Route Repair (IARR) schemes for the healthcare application of WBSN with an objective of improving performance in terms of end-to-end delay, route stability, and throughput. The proposed LLTP scheme considers various priority queues with an optimized scheduling mechanism that dynamically identifies and prioritizes the critical data traffic in an emergency situation to enhance the critical data transmission. Consequently, this will avoid unnecessary queuing delay. The ORD scheme incorporates an improved and multi-facet routing metric, Link Quality Metric (LQM) optimizes the route selection by considering link delay, link delivery ratio, and link interference ratio. The IARR scheme identifies the links experiencing transmission issues due to channel interference and makes a coherent decision about route breakage based on the long term link performance to avoid unnecessary route discovery notifications. The simulation results verified the improved performance in terms of reducing the end-to-end delay by 29%, increasing the throughput by 22% and route stability by 26% as compared to the existing routing schemes such as TTRP, PA-AODV and standard AODV. In conclusion, MIQoS proves to be a suitable routing mechanism for a wide range of interesting applications of WBSN that require fast, reliable and multi-hop communication in heavily loaded network traffic scenarios

    An enhanced mobility and temperature aware routing protocol through multi-criteria decision making method in wireless body area networks

    Get PDF
    © 2018 by the authors. In wireless body area networks, temperature-aware routing plays an important role in preventing damage of surrounding body tissues caused by the temperature rise of the nodes. However, existing temperature-aware routing protocols tend to choose the next hop according to the temperature metric without considering transmission delay and data loss caused by human posture. To address this problem, multiple research efforts exploit different metrics such as temperature, hop count and link quality. Because their approaches are fundamentally based on simple computation through weighted factor for each metric, it is rarely feasible to obtain reasonable weight value through experiments. To solve this problem, we propose an enhanced mobility and temperature-aware routing protocol based on the multi-criteria decision making method. The proposed protocol adopts the analytical hierarchy process and simple additive weighting method to assign suitable weight factors and choose the next hop while considering multiple routing criteria. Simulation results are presented to demonstrate that the proposed protocol can efficiently improve transmission delay and data loss better than existing protocols by preventing the temperature rise on the node

    TAEO-A thermal aware & energy optimized routing protocol for wireless body area networks

    Get PDF
    Wireless Body Area Networks (WBANs) are in the spotlight of researchers and engineering industries due to many applications. Remote health monitoring for general as well as military purposes where tiny sensors are attached or implanted inside the skin of the body to sense the required attribute is particularly prominent. To seamlessly accomplish this procedure, there are various challenges, out of which temperature control to reduce thermal effects and optimum power consumption to reduce energy wastage are placed at the highest priority. Regular and consistent operation of a sensor node for a long-time result in a rising of the temperature of respective tissues, where it is attached or implanted. This temperature rise has harmful effects on human tissues, which may lead to the tissue damage. In this paper, a Temperate Aware and Energy Optimized (TAEO) routing protocol is proposed that not only deals with the thermal aspects and hot spot problem, but also extends the stability and lifetime of a network. Analytical simulations are conducted, and the results depict better performance in terms of the network lifetime, throughput, energy preservation, and temperature control with respect to state of the art WBAN protocols

    A Thermal and Energy Aware Framework with Physiological Safety Considerations for Internet of Things in Healthcare and Medical Applications

    Get PDF
    Healthcare, lifestyle, and medical applications of Internet of Things (IoT) involve the use of wearable technology that employs sensors of various kinds to sense human physiological parameters such as steps walked, body temperature, blood pressure, heart rate and other cardiac parameters. Such sensors and associated actuators can be worn as gadgets, embedded in clothing, worn as patches in contact with the body and could even be implanted inside the body. These sensors are electronic, and any electronic activity during their sensing, processing and wireless transmission is associated with the generation of heat. This dissipated heat can cause discomfort to the subject and has the potential of damaging healthy living tissue and cells. In the proposed work, the author does a performance check on the intrinsic safety aspects of an IoT healthcare network with respect to the functioning of the wireless sensors involved and routing of sensor data samples. The author also suggests an optimized thermal and energy aware framework to address the issue of temperature rise due to processing and data transmission from sensors through signal processing approaches that help in reducing thermal hazards and simultaneously enhancing the network lifetime through energy conservation

    QoS in Body Area Networks: A survey

    Get PDF

    Energy efficiency considerations in software‐defined wireless body area networks

    Get PDF
    Wireless body area networks (WBAN) provide remote services for patient monitoring which allows healthcare practitioners to diagnose, monitor, and prescribe them without their physical presence. To address the shortcomings of WBAN, software-defined networking (SDN) is regarded as an effective approach in this prototype. However, integrating SDN into WBAN presents several challenges in terms of safe data exchange, architectural framework, and resource efficiency. Because energy expenses account for a considerable portion of network expenditures, energy efficiency has to turn out to be a crucial design criterion for modern networking methods. However, creating energy-efficient systems is difficult because they must balance energy efficiency with network performance. In this article, the energy efficiency features are discussed that can widely be used in the software-defined wireless body area network (SDWBAN). A comprehensive survey has been carried out for various modern energy efficiency models based on routing algorithms, optimization models, secure data delivery, and traffic management. A comparative assessment of all the models has also been carried out for various parameters. Furthermore, we explore important concerns and future work in SDWBAN energy efficiency
    corecore