15,583 research outputs found

    Rational physical agent reasoning beyond logic

    No full text
    The paper addresses the problem of defining a theoretical physical agent framework that satisfies practical requirements of programmability by non-programmer engineers and at the same time permitting fast realtime operation of agents on digital computer networks. The objective of the new framework is to enable the satisfaction of performance requirements on autonomous vehicles and robots in space exploration, deep underwater exploration, defense reconnaissance, automated manufacturing and household automation

    Thresholds in layered neural networks with variable activity

    Full text link
    The inclusion of a threshold in the dynamics of layered neural networks with variable activity is studied at arbitrary temperature. In particular, the effects on the retrieval quality of a self-controlled threshold obtained by forcing the neural activity to stay equal to the activity of the stored paterns during the whole retrieval process, are compared with those of a threshold chosen externally for every loading and every temperature through optimisation of the mutual information content of the network. Numerical results, mostly concerning low activity networks are discussed.Comment: 15 pages, Latex2e, 6 eps figure

    Augmented Lagrangian Methods as Layered Control Architectures

    Full text link
    For optimal control problems that involve planning and following a trajectory, two degree of freedom (2DOF) controllers are a ubiquitously used control architecture that decomposes the problem into a trajectory generation layer and a feedback control layer. However, despite the broad use and practical success of this layered control architecture, it remains a design choice that must be imposed a prioria\ priori on the control policy. To address this gap, this paper seeks to initiate a principled study of the design of layered control architectures, with an initial focus on the 2DOF controller. We show that applying the Alternating Direction Method of Multipliers (ADMM) algorithm to solve a strategically rewritten optimal control problem results in solutions that are naturally layered, and composed of a trajectory generation layer and a feedback control layer. Furthermore, these layers are coupled via Lagrange multipliers that ensure dynamic feasibility of the planned trajectory. We instantiate this framework in the context of deterministic and stochastic linear optimal control problems, and show how our approach automatically yields a feedforward/feedback-based control policy that exactly solves the original problem. We then show that the simplicity of the resulting controller structure suggests natural heuristic algorithms for approximately solving nonlinear optimal control problems. We empirically demonstrate improved performance of these layered nonlinear optimal controllers as compared to iLQR, and highlight their flexibility by incorporating both convex and nonconvex constraints
    • …
    corecore