21,035 research outputs found

    Decision Problems for Petri Nets with Names

    Full text link
    We prove several decidability and undecidability results for nu-PN, an extension of P/T nets with pure name creation and name management. We give a simple proof of undecidability of reachability, by reducing reachability in nets with inhibitor arcs to it. Thus, the expressive power of nu-PN strictly surpasses that of P/T nets. We prove that nu-PN are Well Structured Transition Systems. In particular, we obtain decidability of coverability and termination, so that the expressive power of Turing machines is not reached. Moreover, they are strictly Well Structured, so that the boundedness problem is also decidable. We consider two properties, width-boundedness and depth-boundedness, that factorize boundedness. Width-boundedness has already been proven to be decidable. We prove here undecidability of depth-boundedness. Finally, we obtain Ackermann-hardness results for all our decidable decision problems.Comment: 20 pages, 7 figure

    Effective Choice and Boundedness Principles in Computable Analysis

    Full text link
    In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or computable relations between such operations is Weihrauch reducibility and the partially ordered degree structure induced by it. We have identified certain choice principles which are cornerstones among Weihrauch degrees and it turns out that certain core theorems in analysis can be classified naturally in this structure. In particular, we study theorems such as the Intermediate Value Theorem, the Baire Category Theorem, the Banach Inverse Mapping Theorem and others. We also explore how existing classifications of the Hahn-Banach Theorem and Weak K"onig's Lemma fit into this picture. We compare the results of our classification with existing classifications in constructive and reverse mathematics and we claim that in a certain sense our classification is finer and sheds some new light on the computational content of the respective theorems. We develop a number of separation techniques based on a new parallelization principle, on certain invariance properties of Weihrauch reducibility, on the Low Basis Theorem of Jockusch and Soare and based on the Baire Category Theorem. Finally, we present a number of metatheorems that allow to derive upper bounds for the classification of the Weihrauch degree of many theorems and we discuss the Brouwer Fixed Point Theorem as an example

    Using Session Types for Reasoning About Boundedness in the Pi-Calculus

    Get PDF
    The classes of depth-bounded and name-bounded processes are fragments of the pi-calculus for which some of the decision problems that are undecidable for the full calculus become decidable. P is depth-bounded at level k if every reduction sequence for P contains successor processes with at most k active nested restrictions. P is name-bounded at level k if every reduction sequence for P contains successor processes with at most k active bound names. Membership of these classes of processes is undecidable. In this paper we use binary session types to decise two type systems that give a sound characterization of the properties: If a process is well-typed in our first system, it is depth-bounded. If a process is well-typed in our second, more restrictive type system, it will also be name-bounded.Comment: In Proceedings EXPRESS/SOS 2017, arXiv:1709.0004

    Queries with Guarded Negation (full version)

    Full text link
    A well-established and fundamental insight in database theory is that negation (also known as complementation) tends to make queries difficult to process and difficult to reason about. Many basic problems are decidable and admit practical algorithms in the case of unions of conjunctive queries, but become difficult or even undecidable when queries are allowed to contain negation. Inspired by recent results in finite model theory, we consider a restricted form of negation, guarded negation. We introduce a fragment of SQL, called GN-SQL, as well as a fragment of Datalog with stratified negation, called GN-Datalog, that allow only guarded negation, and we show that these query languages are computationally well behaved, in terms of testing query containment, query evaluation, open-world query answering, and boundedness. GN-SQL and GN-Datalog subsume a number of well known query languages and constraint languages, such as unions of conjunctive queries, monadic Datalog, and frontier-guarded tgds. In addition, an analysis of standard benchmark workloads shows that most usage of negation in SQL in practice is guarded negation

    On the boundedness of some nonlinear differential equation of second order

    Get PDF
    In this paper we study the boundedness of the solutions of some nonlinear dofferential equation using as a key tool the Second Lyapunov method, i.e. find sufficient conditions under which the solutions of this equation are bounded. Variuos particular cases and methodological remarks are included at the end of paper.Fil: Guzmán, Paulo Matias. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Napoles Valdes, Juan Eduardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; ArgentinaFil: Lugo, Luciano Miguel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Matemática; Argentin

    Bounded time computation on metric spaces and Banach spaces

    Full text link
    We extend the framework by Kawamura and Cook for investigating computational complexity for operators occurring in analysis. This model is based on second-order complexity theory for functions on the Baire space, which is lifted to metric spaces by means of representations. Time is measured in terms of the length of the input encodings and the required output precision. We propose the notions of a complete representation and of a regular representation. We show that complete representations ensure that any computable function has a time bound. Regular representations generalize Kawamura and Cook's more restrictive notion of a second-order representation, while still guaranteeing fast computability of the length of the encodings. Applying these notions, we investigate the relationship between purely metric properties of a metric space and the existence of a representation such that the metric is computable within bounded time. We show that a bound on the running time of the metric can be straightforwardly translated into size bounds of compact subsets of the metric space. Conversely, for compact spaces and for Banach spaces we construct a family of admissible, complete, regular representations that allow for fast computation of the metric and provide short encodings. Here it is necessary to trade the time bound off against the length of encodings

    The â„“s\ell^s-boundedness of a family of integral operators on UMD Banach function spaces

    Full text link
    We prove the â„“s\ell^s-boundedness of a family of integral operators with an operator-valued kernel on UMD Banach function spaces. This generalizes and simplifies earlier work by Gallarati, Veraar and the author, where the â„“s\ell^s-boundedness of this family of integral operators was shown on Lebesgue spaces. The proof is based on a characterization of â„“s\ell^s-boundedness as weighted boundedness by Rubio de Francia.Comment: 13 pages. Generalization of arXiv:1410.665

    Towards computable analysis on the generalised real line

    Full text link
    In this paper we use infinitary Turing machines with tapes of length κ\kappa and which run for time κ\kappa as presented, e.g., by Koepke \& Seyfferth, to generalise the notion of type two computability to 2κ2^{\kappa}, where κ\kappa is an uncountable cardinal with κ<κ=κ\kappa^{<\kappa}=\kappa. Then we start the study of the computational properties of Rκ\mathbb{R}_\kappa, a real closed field extension of R\mathbb{R} of cardinality 2κ2^{\kappa}, defined by the first author using surreal numbers and proposed as the candidate for generalising real analysis. In particular we introduce representations of Rκ\mathbb{R}_\kappa under which the field operations are computable. Finally we show that this framework is suitable for generalising the classical Weihrauch hierarchy. In particular we start the study of the computational strength of the generalised version of the Intermediate Value Theorem

    Bounded Situation Calculus Action Theories

    Full text link
    In this paper, we investigate bounded action theories in the situation calculus. A bounded action theory is one which entails that, in every situation, the number of object tuples in the extension of fluents is bounded by a given constant, although such extensions are in general different across the infinitely many situations. We argue that such theories are common in applications, either because facts do not persist indefinitely or because the agent eventually forgets some facts, as new ones are learnt. We discuss various classes of bounded action theories. Then we show that verification of a powerful first-order variant of the mu-calculus is decidable for such theories. Notably, this variant supports a controlled form of quantification across situations. We also show that through verification, we can actually check whether an arbitrary action theory maintains boundedness.Comment: 51 page
    • …
    corecore