24,540 research outputs found

    Implementing imperfect information in fuzzy databases

    Get PDF
    Information in real-world applications is often vague, imprecise and uncertain. Ignoring the inherent imperfect nature of real-world will undoubtedly introduce some deformation of human perception of real-world and may eliminate several substantial information, which may be very useful in several data-intensive applications. In database context, several fuzzy database models have been proposed. In these works, fuzziness is introduced at different levels. Common to all these proposals is the support of fuzziness at the attribute level. This paper proposes first a rich set of data types devoted to model the different kinds of imperfect information. The paper then proposes a formal approach to implement these data types. The proposed approach was implemented within a relational object database model but it is generic enough to be incorporated into other database models.ou

    Conceptual design and implementation of the fuzzy semantic model

    Get PDF
    FSM is one of few database models that support fuzziness, uncertainty and impreciseness of real-world at the class definition level. FSM authorizes an entity to be partially member of its class according to a given degree of membership that reflects the level to which the entity verifies the extent properties of this class. This paper deals with the conceptual design of FSM and adresses some implementation issues.ou

    Going Deeper with Semantics: Video Activity Interpretation using Semantic Contextualization

    Full text link
    A deeper understanding of video activities extends beyond recognition of underlying concepts such as actions and objects: constructing deep semantic representations requires reasoning about the semantic relationships among these concepts, often beyond what is directly observed in the data. To this end, we propose an energy minimization framework that leverages large-scale commonsense knowledge bases, such as ConceptNet, to provide contextual cues to establish semantic relationships among entities directly hypothesized from video signal. We mathematically express this using the language of Grenander's canonical pattern generator theory. We show that the use of prior encoded commonsense knowledge alleviate the need for large annotated training datasets and help tackle imbalance in training through prior knowledge. Using three different publicly available datasets - Charades, Microsoft Visual Description Corpus and Breakfast Actions datasets, we show that the proposed model can generate video interpretations whose quality is better than those reported by state-of-the-art approaches, which have substantial training needs. Through extensive experiments, we show that the use of commonsense knowledge from ConceptNet allows the proposed approach to handle various challenges such as training data imbalance, weak features, and complex semantic relationships and visual scenes.Comment: Accepted to WACV 201
    corecore