628,919 research outputs found

    A Mean Field Approximation to the Worldsheet Model of Planar phi^3 Field Theory

    Get PDF
    We develop an approximation scheme for our worldsheet model of the sum of planar diagrams based on mean field theory. At finite coupling the mean field equations show a weak coupling solution that resembles the perturbative diagrams and a strong coupling solution that seems to represent a tensionless soup of field quanta. With a certain amount of fine-tuning, we find a solution of the mean field equations that seems to support string formation.Comment: 27 pages, 10 figures, typos corrected, appendix on slowly varying mean fields adde

    Sine-Gordon Theory for the Equation of State of Classical Hard-Core Coulomb systems. III Loopwise Expansion

    Full text link
    We present an exact field theoretical representation of an ionic solution made of charged hard spheres. The action of the field theory is obtained by performing a Hubbard-Stratonovich transform of the configurational Boltzmann factor. It is shown that the Stillinger-Lovett sum rules are satisfied if and only if all the field correlation functions are short range functions. The mean field, Gaussian and two-loops approximations of the theory are derived and discussed. The mean field approximation for the free energy constitutes a rigorous lower bound for the exact free energy, while the mean field pressure is an upper bound. The one-loop order approximation is shown to be identical with the random phase approximation of the theory of liquids. Finally, at the two-loop order and in the pecular case of the restricted primitive model, one recovers results obtained in the framework of the mode expansion theory.Comment: 35 pages, 3 figure

    Integrating out the Dirac sea in the Walecka model

    Full text link
    We derive a purely fermionic no-sea effective theory, featuring positive-energy states only for the Walecka model. In contrast to the so-called mean-field theory approach with the no-sea approximation, where the Dirac sea is simply omitted from the outset, we turn to the relativistic Hartree approximation and explicitly construct a no-sea effective theory from the underlying quantum field theory. Several results obtained within these two approaches are confronted with each other. This sheds new light on the reliability of the mean-field theory with the no-sea approximation as well as the role of the Dirac sea. Restricting to 1+1 dimensions, we obtain new analytical insights into nonuniform nuclear matter.Comment: 15 pages, 8 figures, several points clarified, Fig.7 replaced, references adde

    Random Sequential Adsorption on a Line: Mean-Field Theory of Diffusional Relaxation

    Get PDF
    We develop a new fast-diffusion approximation for the kinetics of deposition of extended objects on a linear substrate, accompanied by diffusional relaxation. This new approximation plays the role of the mean-field theory for such processes and is valid over a significantly larger range than an earlier variant, which was based on a mapping to chemical reactions. In particular, continuum-limit off-lattice deposition is described naturally within our approximation. The criteria for the applicability of the mean-field theory are derived. While deposition of dimers, and marginally, trimers, is affected by fluctuations, we find that the k-mer deposition kinetics is asymptotically mean-field like for all k=4,5,..., where the limit k->infinity, when properly defined, describes deposition-diffusion kinetics in the continuum.Comment: 18 page

    Model study of the sign problem in a mean-field approximation

    Get PDF
    We study the sign problem of the fermion determinant at nonzero baryon chemical potential. For this purpose we apply a simple model derived from Quantum Chromodynamics, in the limit of large chemical potential and mass. For SU(2) color, there is no sign problem and the mean-field approximation is similar to data from the lattice. For SU(3) color the sign problem is unavoidable, even in a mean-field approximation. We apply a phase-reweighting method, combined with the mean-field approximation, to estimate thermodynamic quantities. We also investigate the mean-field free energy using a saddle-point approximation.Comment: 7 pages, 2 figures, talk presented at the XXV International Symposium on Lattice Field Theory, July 30 - August 4, 2007, Regensburg, German

    Dynamics of Polymers: a Mean-Field Theory

    Get PDF
    We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose form has been speculated and widely applied, but not heretofore derived. Our approach involves a functional integral representation of a Martin-Siggia-Rose type description of the exact many-chain dynamics. A saddle point approximation to the generating functional, involving conditions where the MSR action is stationary with respect to a collective density field ρ\rho and a conjugate MSR response field ϕ\phi, produces the desired dynamical mean-field theory. Besides clarifying the proper structure of mean-field theory out of equilibrium, our results have implications for numerical studies of polymer dynamics involving hybrid particle-field simulation techniques such as the single-chain in mean-field method (SCMF)

    Stochastic quantum dynamics beyond mean-field

    Full text link
    Mean-field approaches where a complex fermionic many-body problem is replaced by an ensemble of independent particles in a self-consistent mean-field can describe many static and dynamical aspects. It generally provides a rather good approximation for the average properties of one-body degrees of freedom. However, the mean-field approximation generally fails to produce quantum fluctuations of collective motion. To overcome this difficulty, noise can be added to the mean-field theory leading to a stochastic description of the many-body problem. In the present work, we summarize recent progress in this field and discuss approaches where fluctuations have been added either to the initial time, like in the Stochastic Mean-Field theory or continuously in time as in the Stochastic Time-Dependent Hartree-Fock. In some cases, the initial problem can even be re-formulated exactly by introducing Quantum Monte-Carlo methods in real-time. The possibility to describe superfluid systems is also invoked. Successes and shortcomings of the different beyond mean-field theories are discussed and illustrated.Comment: 34 pages, submitted to EPJA-Review sectio
    corecore