12,958 research outputs found

    A synchronous program algebra: a basis for reasoning about shared-memory and event-based concurrency

    Full text link
    This research started with an algebra for reasoning about rely/guarantee concurrency for a shared memory model. The approach taken led to a more abstract algebra of atomic steps, in which atomic steps synchronise (rather than interleave) when composed in parallel. The algebra of rely/guarantee concurrency then becomes an instantiation of the more abstract algebra. Many of the core properties needed for rely/guarantee reasoning can be shown to hold in the abstract algebra where their proofs are simpler and hence allow a higher degree of automation. The algebra has been encoded in Isabelle/HOL to provide a basis for tool support for program verification. In rely/guarantee concurrency, programs are specified to guarantee certain behaviours until assumptions about the behaviour of their environment are violated. When assumptions are violated, program behaviour is unconstrained (aborting), and guarantees need no longer hold. To support these guarantees a second synchronous operator, weak conjunction, was introduced: both processes in a weak conjunction must agree to take each atomic step, unless one aborts in which case the whole aborts. In developing the laws for parallel and weak conjunction we found many properties were shared by the operators and that the proofs of many laws were essentially the same. This insight led to the idea of generalising synchronisation to an abstract operator with only the axioms that are shared by the parallel and weak conjunction operator, so that those two operators can be viewed as instantiations of the abstract synchronisation operator. The main differences between parallel and weak conjunction are how they combine individual atomic steps; that is left open in the axioms for the abstract operator.Comment: Extended version of a Formal Methods 2016 paper, "An algebra of synchronous atomic steps

    A synchronous program algebra: a basis for reasoning about shared-memory and event-based concurrency

    Get PDF
    This research started with an algebra for reasoning about rely/guarantee concurrency for a shared memory model. The approach taken led to a more abstract algebra of atomic steps, in which atomic steps synchronise (rather than interleave) when composed in parallel. The algebra of rely/guarantee concurrency then becomes an instantiation of the more abstract algebra. Many of the core properties needed for rely/guarantee reasoning can be shown to hold in the abstract algebra where their proofs are simpler and hence allow a higher degree of automation. The algebra has been encoded in Isabelle/HOL to provide a basis for tool support for program verification. In rely/guarantee concurrency, programs are specified to guarantee certain behaviours until assumptions about the behaviour of their environment are violated. When assumptions are violated, program behaviour is unconstrained (aborting), and guarantees need no longer hold. To support these guarantees a second synchronous operator, weak conjunction, was introduced: both processes in a weak conjunction must agree to take each atomic step, unless one aborts in which case the whole aborts. In developing the laws for parallel and weak conjunction we found many properties were shared by the operators and that the proofs of many laws were essentially the same. This insight led to the idea of generalising synchronisation to an abstract operator with only the axioms that are shared by the parallel and weak conjunction operator, so that those two operators can be viewed as instantiations of the abstract synchronisation operator. The main differences between parallel and weak conjunction are how they combine individual atomic steps; that is left open in the axioms for the abstract operator.Comment: Extended version of a Formal Methods 2016 paper, "An algebra of synchronous atomic steps

    Convolution, Separation and Concurrency

    Full text link
    A notion of convolution is presented in the context of formal power series together with lifting constructions characterising algebras of such series, which usually are quantales. A number of examples underpin the universality of these constructions, the most prominent ones being separation logics, where convolution is separating conjunction in an assertion quantale; interval logics, where convolution is the chop operation; and stream interval functions, where convolution is used for analysing the trajectories of dynamical or real-time systems. A Hoare logic is constructed in a generic fashion on the power series quantale, which applies to each of these examples. In many cases, commutative notions of convolution have natural interpretations as concurrency operations.Comment: 39 page

    On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency

    Full text link
    Concurrent systems are notoriously difficult to analyze, and technological advances such as weak memory architectures greatly compound this problem. This has renewed interest in partial order semantics as a theoretical foundation for formal verification techniques. Among these, symbolic techniques have been shown to be particularly effective at finding concurrency-related bugs because they can leverage highly optimized decision procedures such as SAT/SMT solvers. This paper gives new fundamental results on partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency. In particular, we give the theoretical basis for a decision procedure that can handle a fragment of concurrent programs endowed with least fixed point operators. In addition, we show that a certain partial order semantics of relaxed sequential consistency is equivalent to the conjunction of three extensively studied weak memory axioms by Alglave et al. An important consequence of this equivalence is an asymptotically smaller symbolic encoding for bounded model checking which has only a quadratic number of partial order constraints compared to the state-of-the-art cubic-size encoding.Comment: 15 pages, 3 figure

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper motivates and presents a program logic for reasoning about multithreaded Java-like programs with concurrency primitives such as dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits.\ud This paper presents the basic principles to reason about thread creation and thread joining. It finishes with an outlook how this logic will evolve into a full-fledged verification technique for Java (and possibly other multithreaded languages)

    Between quantum logic and concurrency

    Full text link
    We start from two closure operators defined on the elements of a special kind of partially ordered sets, called causal nets. Causal nets are used to model histories of concurrent processes, recording occurrences of local states and of events. If every maximal chain (line) of such a partially ordered set meets every maximal antichain (cut), then the two closure operators coincide, and generate a complete orthomodular lattice. In this paper we recall that, for any closed set in this lattice, every line meets either it or its orthocomplement in the lattice, and show that to any line, a two-valued state on the lattice can be associated. Starting from this result, we delineate a logical language whose formulas are interpreted over closed sets of a causal net, where every line induces an assignment of truth values to formulas. The resulting logic is non-classical; we show that maximal antichains in a causal net are associated to Boolean (hence "classical") substructures of the overall quantum logic.Comment: In Proceedings QPL 2012, arXiv:1407.842

    Kleene Algebra with Observations

    Get PDF
    Kleene algebra with tests (KAT) is an algebraic framework for reasoning about the control flow of sequential programs. Generalising KAT to reason about concurrent programs is not straightforward, because axioms native to KAT in conjunction with expected axioms for concurrency lead to an anomalous equation. In this paper, we propose Kleene algebra with observations (KAO), a variant of KAT, as an alternative foundation for extending KAT to a concurrent setting. We characterise the free model of KAO, and establish a decision procedure w.r.t. its equational theory
    • …
    corecore