3,270 research outputs found

    A theoretical and empirical integrated method to select the optimal combined signals for geometry-free and geometry-based three-carrier ambiguity resolution

    Get PDF
    12 GPS Block IIF satellites, out of the current constellation, can transmit on three-frequency signals (L1, L2, L5). Taking advantages of these signals, Three-Carrier Ambiguity Resolution (TCAR) is expected to bring much benefit for ambiguity resolution. One of the research areas is to find the optimal combined signals for a better ambiguity resolution in geometry-free (GF) and geometry-based (GB) mode. However, the existing researches select the signals through either pure theoretical analysis or testing with simulated data, which might be biased as the real observation condition could be different from theoretical prediction or simulation. In this paper, we propose a theoretical and empirical integrated method, which first selects the possible optimal combined signals in theory and then refines these signals with real triple-frequency GPS data, observed at eleven baselines of different lengths. An interpolation technique is also adopted in order to show changes of the AR performance with the increase in baseline length. The results show that the AR success rate can be improved by 3% in GF mode and 8% in GB mode at certain intervals of the baseline length. Therefore, the TCAR can perform better by adopting the combined signals proposed in this paper when the baseline meets the length condition

    Benefit of triple-frequency on cycle-slip detection

    Get PDF
    At the time of writing, all the Global Navigation Satellite Systems (GNSS) support or are designed to support triple- or multi- frequency, which is expected to have advantages over single- and dual- frequency. This paper will conduct research on how triple-frequency can benefit the cycle-slip detection process. Correctly detecting and repairing cycle slips can help extend the latency of the fixed ambiguities, estimate the ionospheric delay, reduce the measurement noise and finally improve the positioning precision of the carrier phase. This paper will firstly review the widely used cycle-slip detection methods, including high-order phase differencing, Doppler integration and the ionospheric residual. For applying triple-frequency in cycle-slip detection, we will modify the Hatch-Melbourne-WĂĽbbena combination to eliminate the effect of the ionospheric bias and reduce the measurement noise on the detection value. The triple-frequency method can detect and correct cycle slips instantaneously. All the mentioned methods will be tested using triple-frequency Galileo data observed in static condition. The results show that the performance of the triple-frequency method has a higher success rate and a lower missed detection compared to those using single-frequency, especially in detecting small cycle slips in observation with large intervals. Although the ionospehric residual provides higher success rates at low elevation angles, the triple-frequency method is more advanced than the ionospheric residual, which cannot decide the magnitude of the cycle slips easily

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Adaptive filtering applications to satellite navigation

    Get PDF
    PhDDifferential Global Navigation Satellite Systems employ the extended Kalman filter to estimate the reference position error. High accuracy integrated navigation systems have the ability to mix traditional inertial sensor outputs with navigation satellite based position information and can be used to develop high accuracy landing systems for aircraft. This thesis considers a host of estimation problems associated with aircraft navigation systems that currently rely on the extended Kalman filter and proposes to use a nonlinear estimation algorithm, the unscented Kalman filter (UKF) that does not rely on Jacobian linearisation. The objective is to develop high accuracy positioning algorithms to facilitate the use of GNSS or DGNSS for aircraft landing. Firstly, the position error in a typical satellite navigation problem depends on the accuracy of the orbital ephemeris. The thesis presents results for the prediction of the orbital ephemeris from a customised navigation satellite receiver's data message. The SDP4/SDP8 algorithms and suitable noise models are used to establish the measured data. Secondly, the differential station common mode position error not including the contribution due to errors in the ephemeris is usually estimated by employing an EKF. The thesis then considers the application of the UKF to the mixing problem, so as to facilitate the mixing of measurements made by either a GNSS or a DGNSS and a variety of low cost or high-precision INS sensors. Precise, adaptive UKFs and a suitable nonlinear propagation method are used to estimate the orbit ephemeris and the differential position and the navigation filter mixing errors. The results indicate the method is particularly suitable for estimating the orbit ephemeris of navigation satellites and the differential position and navigation filter mixing errors, thus facilitating interoperable DGNSS operation for aircraft landing

    Cycle slip detection during high ionospheric activities based on combined triple-frequency GNSS signals

    Get PDF
    The current cycle slip detection methods of Global Navigation Satellite System (GNSS) were mostly proposed on the basis of assuming the ionospheric delay varying smoothly over time. However, these methods can be invalid during active ionospheric periods, e.g., high Kp index value and scintillations, due to the significant increase of the ionospheric delay. In order to detect cycle slips during high ionospheric activities successfully, this paper proposes a method based on two modified Hatch–Melbourne–W¨ubbena combinations. The measurement noise in the Hatch–Melbourne–W¨ubbena combination is minimized by employing the optimally selected combined signals, while the ionospheric delay is detrended using a smoothing technique. The difference between the time-differenced ambiguity of the combined signal and this estimated ionospheric trend is adopted as the detection value, which can be free from ionospheric effect and hold the high precision of the combined signal. Five threshold determination methods are proposed and compared to decide the cycle slip from the magnitude aspect. This proposed method is tested with triple-frequency Global Navigation Satellite System observations collected under high ionospheric activities. Results show that the proposed method can correctly detect and fix cycle slips under disturbed ionosphere

    Performance of precise marine positioning using future modernised global satellite positioning systems and a novel partial ambiguity resolution technique

    Get PDF
    The International Maritime Organisation (IMO) established a set of positioning requirements for future Global Navigation Satellite System (GNSS) constellations in IMO resolution A.915. It is important to be able to determine if these requirements can be met, and what shore infrastructure would be required. This thesis describes the collection of data in a marine environment and the analysis of these data with regards to the requirements. The data collection exercise was held at the beginning of May 2008 and saw THV Alert navigate into Harwich Harbour whilst Global Positioning System (GPS) observation data were recorded from onboard the vessel and from shore-based reference stations. Additional data were obtained from nearby Ordnance Survey reference stations, and two total stations were used to track the vessel’s passage to provide a truth model. Several modernised GPS satellites were tracked. The data were processed under different scenarios, using software developed at UCL, and the positioning performance was analysed in the context of the IMO requirements. Potential performance improvements from modernised GPS and Galileo were then discussed. Providing integrity through single-epoch real-time kinematic positioning, required to meet the strictest IMO requirements, is particularly difficult. The identification of phase observation outliers is not possible before the integer ambiguities are resolved, but an undetected outlier could prevent successful ambiguity resolution. It will not always be necessary to fix all the ambiguities to achieve the required positioning precision, particularly with a multi-GNSS constellation. This thesis introduces a new algorithm for partial ambiguity resolution in the presence of measurement bias. Although computationally intensive, this algorithm significantly improves the ambiguity resolution success rate, increasing the maximum baseline length over which the highest requirements are met with dual-frequency GPS from 1 km to 66 km

    ELECTRO-OPTIC ANTENNA ELEMENTS FOR PASSIVE PHASED ARRAY RADAR

    Get PDF
    Passive phased antenna arrays are utilized in military and civilian radar systems to determine the received signal origination. Phased array placement for optimal reception is challenging due to the required supporting electronic hardware and the associated coaxial cabling that typically accompanies each antenna channel. Low noise amplifiers and frequency conversion hardware add size and complexity, limiting possible positions for phased array placement. Eliminating required phased array electronic subcomponents without sacrificing function would allow placement onto smaller agile platforms, such as unmanned systems and rapid deployment networks. Electro-optic (EO) antenna elements utilize an optical waveguide embedded between the antenna and ground plane that responds to the electric field received by the resonating antenna. Using EO antenna elements removes associated electronic hardware from antenna sites, thus simplifying advanced phased array technology. EO antenna elements modulate received signals directly into the optical domain where the low loss, electromagnetic immunity, low weight, and small size advantages of optical fiber can be utilized for antenna remoting. The combination of optical signals from EO antenna elements in Mach-Zehnder interferometers reduces the number of overall channels needed for a given radar system. The reduction of channels further serves to decrease the size, weight, cost, computation, and power requirements of the radar system. This thesis details the design, fabrication, and characterization of EO phased arrays and prototype EO antenna elements, both as individual antenna elements and in a phased array configuration. Waveguide loss, refractive index, and EO coefficient measurements are made for individual EO antenna elements. Radio Frequency (RF) phase modulation emulating a changing angle of arrival is applied by direct injection to a two-element phased array of EO antenna elements. The system’s optical output is correlated to the array factor for a two-element phased array showing proof-of-concept that EO antenna elements can be used in direction finding applications. The sensitivity of EO antenna elements is analyzed and a new design for EO antenna elements with improved sensitivity is presented. The electric field distribution of a rectangular patch antenna at resonance was found to be useful for driving a push-pull Mach-Zehnder modulator, doubling the EO antenna element sensitivity

    Metrics for Emitter Selection for Multistatic Synthetic Aperture Radar

    Get PDF
    A bistatic implementation of synthetic aperture radar (SAR) to form images of the ground from an aircraft makes use of separate emitters and receivers. When not using cooperative emitters, ground based communications systems can provide illumination. One way to improve performance of these waveforms, which are not designed for SAR, is a multistatic implementation, formed from multiple bistatic systems. This leads to the problem of selecting a subset from a potentially large set of emitters to use for image formation. A framework for this selection between sets of emitters is proposed using multiple objective optimization. This approach requires use of objective functions to score the inputs to the selection process. The four objective functions selected to score sets of emitters are: signal to noise ratio, waveform ambiguity function\u27s integrated sidelobes , effective multistatic resolution area, and contrast ratio. To speed calculations, an approximation is found for the point spread function. Simulation is used to compare approximation with theory, showing its utility for emitter selection. Finally a qualitative example of emitter selection is presented

    Analysis and mitigation of site-dependent effects in static and kinematic GNSS applications

    Get PDF
    Satellitensignale unterliegen auf ihrem Weg von der Satelliten- zur Empfangsantenne einer Vielzahl an Einflüssen die zu Abweichungen führen. Heutzutage stellen in vielen Anwendungsbereichen insbesondere die stationsspezifischen Anteile, welche sich in Mehrwegeeffekte aus dem Fernfeld, NLOS-Empfang und Signalbeugung, den Einfluss der Satellitengeometrie und Antennennahfeldeffekte untergliedern lassen, einen der genauigkeitsbegrenzenden Faktoren in der satellitengestützten Positionsbestimmung dar. Dies ist dadurch begründet, dass durch die Abhängigkeit von der individuell vorliegenden Antennenumgebung eine Minimierung der Einflüsse erheblich erschwert wird und etablierte Strategien, wie beispielsweise die Differenzbildung in relativen Positionierungsansätzen, in der Regel nicht anwendbar sind. Obwohl diese Effekte bereits seit den frühesten Entwicklungen auf dem Gebiet der satellitengestützten Positionsbestimmung untersucht wurden, ist eine vollumfängliche Lösungsstrategie auch in der heutigen Zeit noch nicht verfügbar. Daher hat diese Thematik nicht an Relevanz verloren und es besteht noch immer der Bedarf an weiteren Untersuchungen zur Vertiefung des Verständnisses und zur Erweiterung des Portfolios an verfügbaren Minimierungsansätzen. In dieser Arbeit werden die vier unterschiedlichen Effekte vor dem Hintergrund der hochpräzisen Positionsbestimmung in statischen und kinematischen GNSS-Anwendungen adressiert. Der wesentliche Fokus der Untersuchungen liegt hierbei auf der Detektion und Elimination betroffener Satellitensignale durch die Einbindung detaillierter Umgebungsmodelle aus terrestrischen Messverfahren. Auf Basis dieser methodischen und empirischen Analysen lassen sich für die einzelnen Effekte vier Hauptaspekte herausstellen: (1) Da Antennennahfeldeffekte primär den Messsensor selbst beeinflussen und folglich die angestrebte Detektion und Elimination zur Minimierung nicht geeignet ist, wird alternativ die Minimierung des Einflusses durch spezielle Antennenaufbauten empirisch analysiert. Daraus resultierend werden mit exakt identischen Antennenaufbauten erreichbare Genauigkeiten im Submillimeterbereich nachgewiesen. (2) Der Einfluss auf die Positionsgenauigkeit der potentiell durch eine Signalelimination hervorgerufenen Verschlechterung der Satellitengeometrie kann durch Simulationen generischer Abschattungsszenarien als unkritisch identifiziert werden. Darüber hinaus wird eine Methode zur Integration der Qualität der Satellitengeometrie in die Wegpunktplanung von UAVs entwickelt, welche sowohl in der Planungsphase, als auch während des UAV-Fluges eine Anpassung und Optimierung der Flugroute ermöglicht. (3) Auf Basis mittels terrestrischer Laserscanner erzeugter Punktwolken wird eine Methode zur Erzeugung von Elevationsmasken entwickelt, welche adaptiv gegenüber der vorliegenden Antennenumgebung sind und eine effektive Detektion und Elimination von Satellitensignalen erlauben, die NLOS-Empfang oder Signalbeugung unterliegen. Diese Minimierungsstrategie ist sowohl in statischen, als auch kinematischen Anwendungen einsetzbar und ermöglicht bei zusätzlicher Einbindung von Fresnel Zonen auch die Berücksichtigung der Ausbreitungseigenschaften elektromagnetischer Wellen. (4) Als vorbereitender Schritt für die Entwicklung von Methoden zur Detektion und Eliminierung von Fernfeld-Mehrwegeeffekten werden die Voraussetzungen für die Entstehung der Effekte untersucht. Durch Vergleich simulierter und beobachteter SNR-Zeitreihen und der Berücksichtigung von Fresnel Zonen kann eine Überlappung von 50% zwischen Fresnel-Zone und Reflektorfläche als bereits ausreichend für eine potentielle Mehrwegebelastung identifiziert werden. In der Gesamtbetrachtung liefern die in dieser Arbeit gewonnenen Erkenntnisse und entwickelten Methoden einen relevanten Beitrag zu dem übergeordneten Ziel einer ganzheitlichen Minimierung stationsspezifischer Abweichungen und ermöglichen so eine signifikante Verbesserung der Positionsgenauigkeit unter schwierigen GNSS-Bedingungen. Darüber hinaus nimmt diese Arbeit den in den letzten Jahren forcierten Trend von einer punktweisen zu einer flächenhaften Objekterfassung an, indem das Potenzial einer detaillierten und effizienten Erfassung der Antennenumgebung mittels terrestrischer Laserscanner zur Minimierung und Analyse stationsspezifischer Abweichungen bei der satellitengestützten Positionsbestimmung aufzeigt und genutzt wird.Satellite signals are subject to various error sources on their way from the satellite to the receiving antenna. Nowadays, in many fields of application, the site-dependent parts, which can be separated into far-field multipath, NLOS reception and signal diffraction, the influence of the satellite geometry and antenna near-field effects, are one of the accuracy limiting factors in satellite-based positioning. This is due to the fact that the dependence on the individual antenna environment considerably impedes a minimization of the influences and established strategies, such as double-differencing in relative positioning approaches, are generally not applicable. Although these effects have been subject to scientific research since the earliest developments in the field of satellite-based positioning, an all-embracing solution is still lacking. Therefore, this topic has not lost its relevance and there is still a need for further investigations to deepen the understanding and expanding the portfolio of available mitigation techniques. In this dissertation, the four different effects are addressed against the background of high-precision static and kinematic GNSS applications. In this context, the main focus of the investigations is on the detection and exclusion of affected satellite signals, by integrating detailed environment models derived from terrestrial measurements. Based on these methodological and empirical analyses, four main aspects can be highlighted for the different effects: (1) Since antenna near-field effects primarily affect the measuring sensor itself, and thus, the striven detection and exclusion for mitigation is not applicable in this case, alternatively the mitigation of the influence by special antenna setups is empirically analyzed. As a result, achievable accuracies in the sub-millimeter range can be demonstrated using exactly identical antenna setups. (2) By simulating generic obstruction scenarios, the influence on the positional accuracy of the deterioration of the satellite geometry, potentially caused by an elimination of satellite signals, can be identified as uncritical. Furthermore, a method for integrating measures for the quality of the satellite geometry in the waypoint planning of UAVs is developed, which enables the adaption and optimization of the flight route in the planning phase, as well as during the UAV flight. (3) Based on point clouds of terrestrial laser scanners, a method for the determination of elevation masks that are adaptive to the present antenna environment is developed, which enables an effective detection and exclusion of signals that are subject to NLOS reception or signal diffraction. This mitigation strategy can be applied to static and kinematic GNSS applications and by additionally integrating Fresnel zones, also the propagation characteristics of electromagnetic waves are considered. (4) As a preparatory step for the development of methods for detecting and excluding far-field multipath, the prerequisites for the occurrence of the effect are investigated. By comparison of simulated and observed SNR time series and by considering Fresnel zones, an overlap of 50% between Fresnel zone and reflecting surface can be identified as already being sufficient for potential far-field multipath influences. In the overall view, the findings and methods developed in this dissertation represent a relevant contribution to the superordinate goal of a holistic mitigation of site-dependent effects, and thus, enable a significant improvement of the positional accuracy under difficult GNSS conditions. In addition, this thesis adopts the currently forced trend from a pointwise to an area-based object acquisition by revealing and exploiting the potential of a detailed and efficient acquisition of the antenna environment by terrestrial laser scanners for mitigating and analyzing site-dependent effects in satellite based positioning applications
    • …
    corecore