884 research outputs found

    A Security Analysis of IoT Encryption: Side-channel Cube Attack on Simeck32/64

    Get PDF
    Simeck, a lightweight block cipher has been proposed to be one of the encryption that can be employed in the Internet of Things (IoT) applications. Therefore, this paper presents the security of the Simeck32/64 block cipher against side-channel cube attack. We exhibit our attack against Simeck32/64 using the Hamming weight leakage assumption to extract linearly independent equations in key bits. We have been able to find 32 linearly independent equations in 32 key variables by only considering the second bit from the LSB of the Hamming weight leakage of the internal state on the fourth round of the cipher. This enables our attack to improve previous attacks on Simeck32/64 within side-channel attack model with better time and data complexity of 2^35 and 2^11.29 respectively.Comment: 12 pages, 6 figures, 4 tables, International Journal of Computer Networks & Communication

    Neural Relax

    Full text link
    We present an algorithm for data preprocessing of an associative memory inspired to an electrostatic problem that turns out to have intimate relations with information maximization

    New insights on neutral binary representations for evolutionary optimization

    Get PDF
    This paper studies a family of redundant binary representations NNg(l, k), which are based on the mathematical formulation of error control codes, in particular, on linear block codes, which are used to add redundancy and neutrality to the representations. The analysis of the properties of uniformity, connectivity, synonymity, locality and topology of the NNg(l, k) representations is presented, as well as the way an (1+1)-ES can be modeled using Markov chains and applied to NK fitness landscapes with adjacent neighborhood.The results show that it is possible to design synonymously redundant representations that allow an increase of the connectivity between phenotypes. For easy problems, synonymously NNg(l, k) representations, with high locality, and where it is not necessary to present high values of connectivity are the most suitable for an efficient evolutionary search. On the contrary, for difficult problems, NNg(l, k) representations with low locality, which present connectivity between intermediate to high and with intermediate values of synonymity are the best ones. These results allow to conclude that NNg(l, k) representations with better performance in NK fitness landscapes with adjacent neighborhood do not exhibit extreme values of any of the properties commonly considered in the literature of evolutionary computation. This conclusion is contrary to what one would expect when taking into account the literature recommendations. This may help understand the current difficulty to formulate redundant representations, which are proven to be successful in evolutionary computation. (C) 2016 Elsevier B.V. All rights reserved

    Geometry and Expressive Power of Conditional Restricted Boltzmann Machines

    Full text link
    Conditional restricted Boltzmann machines are undirected stochastic neural networks with a layer of input and output units connected bipartitely to a layer of hidden units. These networks define models of conditional probability distributions on the states of the output units given the states of the input units, parametrized by interaction weights and biases. We address the representational power of these models, proving results their ability to represent conditional Markov random fields and conditional distributions with restricted supports, the minimal size of universal approximators, the maximal model approximation errors, and on the dimension of the set of representable conditional distributions. We contribute new tools for investigating conditional probability models, which allow us to improve the results that can be derived from existing work on restricted Boltzmann machine probability models.Comment: 30 pages, 5 figures, 1 algorith
    • …
    corecore