2,621 research outputs found

    Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection

    Get PDF
    The multitemporal classification of remote sensing images is a challenging problem, in which the efficient combination of different sources of information (e.g., temporal, contextual, or multisensor) can improve the results. In this paper, we present a general framework based on kernel methods for the integration of heterogeneous sources of information. Using the theoretical principles in this framework, three main contributions are presented. First, a novel family of kernel-based methods for multitemporal classification of remote sensing images is presented. The second contribution is the development of nonlinear kernel classifiers for the well-known difference and ratioing change detection methods by formulating them in an adequate high-dimensional feature space. Finally, the presented methodology allows the integration of contextual information and multisensor images with different levels of nonlinear sophistication. The binary support vector (SV) classifier and the one-class SV domain description classifier are evaluated by using both linear and nonlinear kernel functions. Good performance on synthetic and real multitemporal classification scenarios illustrates the generalization of the framework and the capabilities of the proposed algorithms.Publicad

    Unsupervised Image Regression for Heterogeneous Change Detection

    Get PDF
    Change detection (CD) in heterogeneous multitemporal satellite images is an emerging and challenging topic in remote sensing. In particular, one of the main challenges is to tackle the problem in an unsupervised manner. In this paper, we propose an unsupervised framework for bitemporal heterogeneous CD based on the comparison of affinity matrices and image regression. First, our method quantifies the similarity of affinity matrices computed from colocated image patches in the two images. This is done to automatically identify pixels that are likely to be unchanged. With the identified pixels as pseudotraining data, we learn a transformation to map the first image to the domain of the other image and vice versa. Four regression methods are selected to carry out the transformation: Gaussian process regression, support vector regression, random forest regression (RFR), and a recently proposed kernel regression method called homogeneous pixel transformation. To evaluate the potentials and limitations of our framework and also the benefits and disadvantages of each regression method, we perform experiments on two real data sets. The results indicate that the comparison of the affinity matrices can already be considered a CD method by itself. However, image regression is shown to improve the results obtained by the previous step alone and produces accurate CD maps despite of the heterogeneity of the multitemporal input data. Notably, the RFR approach excels by achieving similar accuracy as the other methods, but with a significantly lower computational cost and with fast and robust tuning of hyperparameters
    • 

    corecore