53,709 research outputs found

    Making Sense of the Mental Universe

    Get PDF
    In 2005, an essay was published in Nature asserting that the universe is mental and that we must abandon our tendency to conceptualize observations as things. Since then, experiments have confirmed that — as predicted by quantum mechanics — reality is contextual, which contradicts at least intuitive formulations of realism and corroborates the hypothesis of a mental universe. Yet, to give this hypothesis a coherent rendering, one must explain how a mental universe can — at least in principle — accommodate (a) our experience of ourselves as distinct individual minds sharing a world beyond the control of our volition; and (b) the empirical fact that this world is contextual despite being seemingly shared. By combining a modern formulation of the ontology of idealism with the relational interpretation of quantum mechanics, the present paper attempts to provide a viable explanatory framework for both points. In the process of doing so, the paper also addresses key philosophical qualms of the relational interpretation

    De/construction sites: Romans and the digital playground

    No full text
    The Roman world as attested to archaeologically and as interacted with today has its expression in a great many computational and other media. The place of visualisation within this has been paramount. This paper argues that the process of digitally constructing the Roman world and the exploration of the resultant models are useful methods for interpretation and influential factors in the creation of a popular Roman aesthetic. Furthermore, it suggests ways in which novel computational techniques enable the systematic deconstruction of such models, in turn re-purposing the many extant representations of Roman architecture and material culture

    Appearance Changes due to Light Exposure

    Get PDF
    The fading of materials due to light exposure over time is a major contributor to the overall aged appearance of man-made objects. Although much attention has been devoted to the modeling of aging and weathering phenomena over the last decade, comparatively little attention has been paid to fading effects. In this dissertation, we present a theoretical framework for the physically-based simulation of time-dependent spectral changes induced by absorbed radiation. This framework relies on the general volumetric radiative transfer theory, and it employs a physicochemical approach to account for variations in the absorptive properties of colourants. Employing this framework, a layered fading model that can be readily integrated into existing rendering systems is developed using the Kubelka-Munk theory. We evaluate its correctness through comparisons of measured and simulated fading results. Challenges in the acquisition of reliable measurements are discussed. The performance characteristics of the proposed model are analysed, and techniques for improving the runtime cost are outlined. Finally, we demonstrate the effectiveness of this model through renderings depicting typical fading scenarios
    • …
    corecore