14,351 research outputs found

    Design of a biologically inspired navigation system for the Psikharpax rodent robot

    Get PDF
    This work presents the development and implementation of a biologically inspired navigation system on the autonomous Psikharpax rodent robot. Our system comprises two independent navigation strategies: a taxon expert and a planning expert. The presented navigation system allows the robot to learn the optimal strategy in each situation, by relying upon a strategy selection mechanism

    The Role Of The Receptive Field Structure In Neuronal Compressive Sensing Signal Processing

    Get PDF
    The receptive field structure ubiquitous in the visual system is believed to play a crucial role in encoding stimulus characteristics, such as contrast and spectral composition. However, receptive field architecture may also result in unforeseen difficulties in processing particular classes of images. We explore the potential functional benefits and shortcomings of localization and center-surround paradigms in the context of an integrate-and-fire neuronal network model. Utilizing the sparsity of natural scenes, we derive a compressive-sensing based theoretical framework for network input reconstructions based on neuronal firing rate dynamics [1, 2]. This formalism underlines a potential mechanism for efficiently transmitting sparse stimulus information, and further suggests sensory pathways may have evolved to take advantage of the sparsity of visual stimuli [3, 4]. Using this methodology, we investigate how the accuracy of image encoding depends on the network architecture. We demonstrate that the receptive field structure does indeed facilitate marked improvements in natural stimulus encoding at the price of yielding erroneous information about specific classes of stimuli. Relative to uniformly random sampling, we show that localized random sampling yields robust improvements in image reconstructions, which are most pronounced for natural stimuli containing a relatively large spread of dominant low frequency components. This suggests a novel direction for compressive sensing theory and sampling methodology in engineered devices. However, for images with specific gray-scale patterning, such as the Hermann grid depicted in Fig. 1, we show that localization in sampling produces systematic errors in image encoding that may underlie several optical illusions. We expect that these connections between input characteristics, network topology, and neuronal dynamics will give new insights into the structure-function relationship of the visual system

    Unsupervised Emergence of Egocentric Spatial Structure from Sensorimotor Prediction

    Get PDF
    Despite its omnipresence in robotics application, the nature of spatial knowledgeand the mechanisms that underlie its emergence in autonomous agents are stillpoorly understood. Recent theoretical works suggest that the Euclidean structure ofspace induces invariants in an agent’s raw sensorimotor experience. We hypothesizethat capturing these invariants is beneficial for sensorimotor prediction and that,under certain exploratory conditions, a motor representation capturing the structureof the external space should emerge as a byproduct of learning to predict futuresensory experiences. We propose a simple sensorimotor predictive scheme, applyit to different agents and types of exploration, and evaluate the pertinence of thesehypotheses. We show that a naive agent can capture the topology and metricregularity of its sensor’s position in an egocentric spatial frame without any a prioriknowledge, nor extraneous supervision
    • …
    corecore