5,844 research outputs found

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    On the discovery of social roles in large scale social systems

    Get PDF
    The social role of a participant in a social system is a label conceptualizing the circumstances under which she interacts within it. They may be used as a theoretical tool that explains why and how users participate in an online social system. Social role analysis also serves practical purposes, such as reducing the structure of complex systems to rela- tionships among roles rather than alters, and enabling a comparison of social systems that emerge in similar contexts. This article presents a data-driven approach for the discovery of social roles in large scale social systems. Motivated by an analysis of the present art, the method discovers roles by the conditional triad censuses of user ego-networks, which is a promising tool because they capture the degree to which basic social forces push upon a user to interact with others. Clusters of censuses, inferred from samples of large scale network carefully chosen to preserve local structural prop- erties, define the social roles. The promise of the method is demonstrated by discussing and discovering the roles that emerge in both Facebook and Wikipedia. The article con- cludes with a discussion of the challenges and future opportunities in the discovery of social roles in large social systems

    Profiling user interactions on online social networks.

    Get PDF
    Over the last couple of years, there has been signi_cant research e_ort in mining user behavior on online social networks for applications ranging from sentiment analysis to marketing. In most of those applications, usually a snapshot of user attributes or user relationships are analyzed to build the data mining models, without considering how user attributes and user relationships can be utilized together. In this thesis, we will describe how user relationships within a social network can be further augmented by information gathered from user generated texts to analyze large scale dynamics of social networks. Speci_cally, we aim at explaining social network interactions by using information gleaned from friendships, pro_les, and status posts of users. Our approach pro_les user interactions in terms of shared similarities among users, and applies the gained knowledge to help users in understanding the inherent reasons, consequences and bene_ts of interacting with other social network users

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Profiling user interactions on online social networks.

    Get PDF
    Over the last couple of years, there has been signi_cant research e_ort in mining user behavior on online social networks for applications ranging from sentiment analysis to marketing. In most of those applications, usually a snapshot of user attributes or user relationships are analyzed to build the data mining models, without considering how user attributes and user relationships can be utilized together. In this thesis, we will describe how user relationships within a social network can be further augmented by information gathered from user generated texts to analyze large scale dynamics of social networks. Speci_cally, we aim at explaining social network interactions by using information gleaned from friendships, pro_les, and status posts of users. Our approach pro_les user interactions in terms of shared similarities among users, and applies the gained knowledge to help users in understanding the inherent reasons, consequences and bene_ts of interacting with other social network users

    Assembling thefacebook: Using heterogeneity to understand online social network assembly

    Full text link
    Online social networks represent a popular and diverse class of social media systems. Despite this variety, each of these systems undergoes a general process of online social network assembly, which represents the complicated and heterogeneous changes that transform newly born systems into mature platforms. However, little is known about this process. For example, how much of a network's assembly is driven by simple growth? How does a network's structure change as it matures? How does network structure vary with adoption rates and user heterogeneity, and do these properties play different roles at different points in the assembly? We investigate these and other questions using a unique dataset of online connections among the roughly one million users at the first 100 colleges admitted to Facebook, captured just 20 months after its launch. We first show that different vintages and adoption rates across this population of networks reveal temporal dynamics of the assembly process, and that assembly is only loosely related to network growth. We then exploit natural experiments embedded in this dataset and complementary data obtained via Internet archaeology to show that different subnetworks matured at different rates toward similar end states. These results shed light on the processes and patterns of online social network assembly, and may facilitate more effective design for online social systems.Comment: 13 pages, 11 figures, Proceedings of the 7th Annual ACM Web Science Conference (WebSci), 201
    corecore