191 research outputs found

    A Categorical Critical-pair Completion Algorithm

    Get PDF
    AbstractWe introduce a general critical-pair/completion algorithm, formulated in the language of category theory. It encompasses the Knuth–Bendix procedure for term rewriting systems (also modulo equivalence relations), the Gröbner basis algorithm for polynomial ideal theory, and the resolution procedure for automated theorem proving. We show how these three procedures fit in the general algorithm, and how our approach relates to other categorical modeling approaches to these algorithms, especially term rewriting

    Automatic synthesis of decision procedures

    Get PDF

    Formalizing Knuth-Bendix Orders and Knuth-Bendix Completion

    Get PDF
    We present extensions of our Isabelle Formalization of Rewriting that cover two historically related concepts: the Knuth-Bendix order and the Knuth-Bendix completion procedure. The former, besides being the first development of its kind in a proof assistant, is based on a generalized version of the Knuth-Bendix order. We compare our version to variants from the literature and show all properties required to certify termination proofs of TRSs. The latter comprises the formalization of important facts that are related to completion, like Birkhoff\u27s theorem, the critical pair theorem, and a soundness proof of completion, showing that the strict encompassment condition is superfluous for finite runs. As a result, we are able to certify completion proofs

    Solving Equality Reasoning Problems with a Connection Graph Theorem Prover

    Get PDF
    The integration of a Knuth-Bendix completion algorithm into a paramodulation theorem prover on the basis of a connection graph resolution procedure is presented. The Knuth-Bendix completion idea is compared to a decomposition approach, and some ideas to handle conditional equations are discussed. The contents of this paper is not intended to present new material on term rewriting, instead it is more a pleading for the usage of completion ideas in automated deduction. It records our experience with an actual implementation of a hybrid system, where a completion procedure was imbedded into a connection graph theorem prover, the MKRP-system, with satisfactory positive results
    • …
    corecore