5,364 research outputs found

    Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs

    Get PDF
    We investigate the space complexity of certain perfect matching problems over bipartite graphs embedded on surfaces of constant genus (orientable or non-orientable). We show that the problems of deciding whether such graphs have (1) a perfect matching or not and (2) a unique perfect matching or not, are in the logspace complexity class \SPL. Since \SPL\ is contained in the logspace counting classes \oplus\L (in fact in \modk\ for all k≥2k\geq 2), \CeqL, and \PL, our upper bound places the above-mentioned matching problems in these counting classes as well. We also show that the search version, computing a perfect matching, for this class of graphs is in \FL^{\SPL}. Our results extend the same upper bounds for these problems over bipartite planar graphs known earlier. As our main technical result, we design a logspace computable and polynomially bounded weight function which isolates a minimum weight perfect matching in bipartite graphs embedded on surfaces of constant genus. We use results from algebraic topology for proving the correctness of the weight function.Comment: 23 pages, 13 figure

    Deconstructing Approximate Offsets

    Full text link
    We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance \eps in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. A variant of the algorithm, which we have implemented using CGAL, is based on rational arithmetic and answers the same deconstruction problem up to an uncertainty parameter \delta; its running time additionally depends on \delta. If the input shape is found to be approximable, this algorithm also computes an approximate solution for the problem. It also allows us to solve parameter-optimization problems induced by the offset-deconstruction problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution P with at most one more vertex than a vertex-minimal one.Comment: 18 pages, 11 figures, previous version accepted at SoCG 2011, submitted to DC

    Linear-Time Algorithms for Geometric Graphs with Sublinearly Many Edge Crossings

    Full text link
    We provide linear-time algorithms for geometric graphs with sublinearly many crossings. That is, we provide algorithms running in O(n) time on connected geometric graphs having n vertices and k crossings, where k is smaller than n by an iterated logarithmic factor. Specific problems we study include Voronoi diagrams and single-source shortest paths. Our algorithms all run in linear time in the standard comparison-based computational model; hence, we make no assumptions about the distribution or bit complexities of edge weights, nor do we utilize unusual bit-level operations on memory words. Instead, our algorithms are based on a planarization method that "zeroes in" on edge crossings, together with methods for extending planar separator decompositions to geometric graphs with sublinearly many crossings. Incidentally, our planarization algorithm also solves an open computational geometry problem of Chazelle for triangulating a self-intersecting polygonal chain having n segments and k crossings in linear time, for the case when k is sublinear in n by an iterated logarithmic factor.Comment: Expanded version of a paper appearing at the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA09

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    An elementary proof of Euler formula using Cauchy's method

    Full text link
    The use of Cauchy's method to prove Euler's well-known formula is an object of many controversies. The purpose of this paper is to prove that Cauchy's method applies for convex polyhedra and not only for them, but also for surfaces such as the torus, the projective plane, the Klein bottle and the pinched torus

    Cutting sequences on translation surfaces

    Full text link
    We analyze the cutting sequences associated to geodesic flow on a large class of translation surfaces, including Bouw-Moller surfaces. We give a combinatorial rule that relates a cutting sequence corresponding to a given trajectory, to the cutting sequence corresponding to the image of that trajectory under the parabolic element of the Veech group. This extends previous work for regular polygon surfaces to a larger class of translation surfaces. We find that the combinatorial rule is the same as for regular polygon surfaces in about half of the cases, and different in the other half.Comment: 30 pages, 19 figure

    Facets for Art Gallery Problems

    Full text link
    The Art Gallery Problem (AGP) asks for placing a minimum number of stationary guards in a polygonal region P, such that all points in P are guarded. The problem is known to be NP-hard, and its inherent continuous structure (with both the set of points that need to be guarded and the set of points that can be used for guarding being uncountably infinite) makes it difficult to apply a straightforward formulation as an Integer Linear Program. We use an iterative primal-dual relaxation approach for solving AGP instances to optimality. At each stage, a pair of LP relaxations for a finite candidate subset of primal covering and dual packing constraints and variables is considered; these correspond to possible guard positions and points that are to be guarded. Particularly useful are cutting planes for eliminating fractional solutions. We identify two classes of facets, based on Edge Cover and Set Cover (SC) inequalities. Solving the separation problem for the latter is NP-complete, but exploiting the underlying geometric structure, we show that large subclasses of fractional SC solutions cannot occur for the AGP. This allows us to separate the relevant subset of facets in polynomial time. We also characterize all facets for finite AGP relaxations with coefficients in {0, 1, 2}. Finally, we demonstrate the practical usefulness of our approach. Our cutting plane technique yields a significant improvement in terms of speed and solution quality due to considerably reduced integrality gaps as compared to the approach by Kr\"oller et al.Comment: 29 pages, 18 figures, 1 tabl
    • …
    corecore