252,172 research outputs found

    Pseudo-Unitary Operators and Pseudo-Unitary Quantum Dynamics

    Full text link
    We consider pseudo-unitary quantum systems and discuss various properties of pseudo-unitary operators. In particular we prove a characterization theorem for block-diagonalizable pseudo-unitary operators with finite-dimensional diagonal blocks. Furthermore, we show that every pseudo-unitary matrix is the exponential of i=1i=\sqrt{-1} times a pseudo-Hermitian matrix, and determine the structure of the Lie groups consisting of pseudo-unitary matrices. In particular, we present a thorough treatment of 2×22\times 2 pseudo-unitary matrices and discuss an example of a quantum system with a 2×22\times 2 pseudo-unitary dynamical group. As other applications of our general results we give a proof of the spectral theorem for symplectic transformations of classical mechanics, demonstrate the coincidence of the symplectic group Sp(2n)Sp(2n) with the real subgroup of a matrix group that is isomorphic to the pseudo-unitary group U(n,n), and elaborate on an approach to second quantization that makes use of the underlying pseudo-unitary dynamical groups.Comment: Revised and expanded version, includes an application to symplectic transformations and groups, accepted for publication in J. Math. Phy

    Noncommutative Gauge Field Theories: A No-Go Theorem

    Get PDF
    Studying the general structure of the noncommutative (NC) local groups, we prove a no-go theorem for NC gauge theories. According to this theorem, the closure condition of the gauge algebra implies that: 1) the local NC u(n)u(n) {\it algebra} only admits the irreducible n by n matrix-representation. Hence the gauge fields are in n by n matrix form, while the matter fields {\it can only be} in fundamental, adjoint or singlet states; 2) for any gauge group consisting of several simple-group factors, the matter fields can transform nontrivially under {\it at most two} NC group factors. In other words, the matter fields cannot carry more than two NC gauge group charges. This no-go theorem imposes strong restrictions on the NC version of the Standard Model and in resolving the standing problem of charge quantization in noncommutative QED.Comment: latex, 4 page
    corecore