9,135 research outputs found

    Besov regularity of solutions to the p-Poisson equation

    Full text link
    In this paper, we study the regularity of solutions to the pp-Poisson equation for all 1<p<1<p<\infty. In particular, we are interested in smoothness estimates in the adaptivity scale Bτσ(Lτ(Ω)) B^\sigma_{\tau}(L_{\tau}(\Omega)), 1/τ=σ/d+1/p1/\tau = \sigma/d+1/p, of Besov spaces. The regularity in this scale determines the order of approximation that can be achieved by adaptive and other nonlinear approximation methods. It turns out that, especially for solutions to pp-Poisson equations with homogeneous Dirichlet boundary conditions on bounded polygonal domains, the Besov regularity is significantly higher than the Sobolev regularity which justifies the use of adaptive algorithms. This type of results is obtained by combining local H\"older with global Sobolev estimates. In particular, we prove that intersections of locally weighted H\"older spaces and Sobolev spaces can be continuously embedded into the specific scale of Besov spaces we are interested in. The proof of this embedding result is based on wavelet characterizations of Besov spaces.Comment: 45 pages, 2 figure

    Ergodic Mean Field Games with H\"ormander diffusions

    Get PDF
    We prove existence of solutions for a class of systems of subelliptic PDEs arising from Mean Field Game systems with H\"ormander diffusion. These results are motivated by the feedback synthesis Mean Field Game solutions and the Nash equilibria of a large class of NN-player differential games
    corecore