9,135 research outputs found
Besov regularity of solutions to the p-Poisson equation
In this paper, we study the regularity of solutions to the -Poisson
equation for all . In particular, we are interested in smoothness
estimates in the adaptivity scale , , of Besov spaces. The regularity in this scale determines the
order of approximation that can be achieved by adaptive and other nonlinear
approximation methods. It turns out that, especially for solutions to
-Poisson equations with homogeneous Dirichlet boundary conditions on bounded
polygonal domains, the Besov regularity is significantly higher than the
Sobolev regularity which justifies the use of adaptive algorithms. This type of
results is obtained by combining local H\"older with global Sobolev estimates.
In particular, we prove that intersections of locally weighted H\"older spaces
and Sobolev spaces can be continuously embedded into the specific scale of
Besov spaces we are interested in. The proof of this embedding result is based
on wavelet characterizations of Besov spaces.Comment: 45 pages, 2 figure
Ergodic Mean Field Games with H\"ormander diffusions
We prove existence of solutions for a class of systems of subelliptic PDEs
arising from Mean Field Game systems with H\"ormander diffusion. These results
are motivated by the feedback synthesis Mean Field Game solutions and the Nash
equilibria of a large class of -player differential games
- …
