3,058 research outputs found

    A Theme-Rewriting Approach for Generating Algebra Word Problems

    Full text link
    Texts present coherent stories that have a particular theme or overall setting, for example science fiction or western. In this paper, we present a text generation method called {\it rewriting} that edits existing human-authored narratives to change their theme without changing the underlying story. We apply the approach to math word problems, where it might help students stay more engaged by quickly transforming all of their homework assignments to the theme of their favorite movie without changing the math concepts that are being taught. Our rewriting method uses a two-stage decoding process, which proposes new words from the target theme and scores the resulting stories according to a number of factors defining aspects of syntactic, semantic, and thematic coherence. Experiments demonstrate that the final stories typically represent the new theme well while still testing the original math concepts, outperforming a number of baselines. We also release a new dataset of human-authored rewrites of math word problems in several themes.Comment: To appear EMNLP 201

    String rewriting for Double Coset Systems

    Full text link
    In this paper we show how string rewriting methods can be applied to give a new method of computing double cosets. Previous methods for double cosets were enumerative and thus restricted to finite examples. Our rewriting methods do not suffer this restriction and we present some examples of infinite double coset systems which can now easily be solved using our approach. Even when both enumerative and rewriting techniques are present, our rewriting methods will be competitive because they i) do not require the preliminary calculation of cosets; and ii) as with single coset problems, there are many examples for which rewriting is more effective than enumeration. Automata provide the means for identifying expressions for normal forms in infinite situations and we show how they may be constructed in this setting. Further, related results on logged string rewriting for monoid presentations are exploited to show how witnesses for the computations can be provided and how information about the subgroups and the relations between them can be extracted. Finally, we discuss how the double coset problem is a special case of the problem of computing induced actions of categories which demonstrates that our rewriting methods are applicable to a much wider class of problems than just the double coset problem.Comment: accepted for publication by the Journal of Symbolic Computatio

    The algebra of rewriting for presentations of inverse monoids

    Get PDF
    We describe a formalism, using groupoids, for the study of rewriting for presentations of inverse monoids, that is based on the Squier complex construction for monoid presentations. We introduce the class of pseudoregular groupoids, an example of which now arises as the fundamental groupoid of our version of the Squier complex. A further key ingredient is the factorisation of the presentation map from a free inverse monoid as the composition of an idempotent pure map and an idempotent separating map. The relation module of a presentation is then defined as the abelianised kernel of this idempotent separating map. We then use the properties of idempotent separating maps to derive a free presentation of the relation module. The construction of its kernel - the module of identities - uses further facts about pseudoregular groupoids.Comment: 22 page

    Finite Gr\"obner--Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids

    Get PDF
    This paper shows that every Plactic algebra of finite rank admits a finite Gr\"obner--Shirshov basis. The result is proved by using the combinatorial properties of Young tableaux to construct a finite complete rewriting system for the corresponding Plactic monoid, which also yields the corollaries that Plactic monoids of finite rank have finite derivation type and satisfy the homological finiteness properties left and right FPFP_\infty. Also, answering a question of Zelmanov, we apply this rewriting system and other techniques to show that Plactic monoids of finite rank are biautomatic.Comment: 16 pages; 3 figures. Minor revision: typos fixed; figures redrawn; references update

    Termination orders for 3-dimensional rewriting

    Get PDF
    This paper studies 3-polygraphs as a framework for rewriting on two-dimensional words. A translation of term rewriting systems into 3-polygraphs with explicit resource management is given, and the respective computational properties of each system are studied. Finally, a convergent 3-polygraph for the (commutative) theory of Z/2Z-vector spaces is given. In order to prove these results, it is explained how to craft a class of termination orders for 3-polygraphs.Comment: 30 pages, 35 figure
    corecore