215 research outputs found

    A Shoulder-Surfing Resistant Scheme Embedded in Traditional Passwords

    Get PDF
    Typing passwords is vulnerable to shoulder-surfing attacks. We proposed a shoulder-surfing resistant scheme embedded in traditional textual passwords in this study. With the proposed scheme, when the password field is on focus, a pattern appears in it as a hint to tell the user how to enter a password. Following the hint, the user needs to skip some characters while typing the password. The characters to be skipped are randomly selected so that an observer will not be able to see the whole password even if the authentication procedure was recorded. We evaluated the proposed scheme in a usability study. Compared to traditional passwords, our scheme achieved a similar level of accuracy while only required marginal additional time to authenticate users. Participants also expressed significantly higher acceptance of the new technique for security-sensitive applications and gave it significantly higher ratings in perceived security, shoulders-surfing resistance, camera-recording resistance, and guess-attack resistance

    A Pattern-Based Password Authentication Scheme for Minimizing Shoulder Surfing Attack

    Get PDF
    The user usually uses password to avoid the attacks like a dictionary attack, brute force attack and shoulder surfing attack which is the famous attack nowadays. The shoulder surfing attack is a direct observation technique by watching over the user’s shoulder when they enter their password to get information. The most common authentication method used by the user is textual password. But, the textual password has many disadvantages because it is vulnerable to attack as it tends to shoulder surfing attack. In this project, a pattern-based password authentication will develop to overcome this problem. Using this scheme, the user needs to select the type of pattern that they like during registration. To login to their account, the user needs to enter the password in the form of the textual password in ordering manner based on a pattern that they choose during registration. The text password grid presented with a different style as it filled with random objects whether characters, numbers or images. This method is suitable to minimizing shoulder surfing attack as it can improve the security of user’s password and they can efficiently login to the system

    A Shoulder Surfing Resistant Graphical Authentication System

    Get PDF
    Authentication based on passwords is used largely in applications for computer security and privacy. However, human actions such as choosing bad passwords and inputting passwords in an insecure way are regarded as ”the weakest link” in the authentication chain. Rather than arbitrary alphanumeric strings, users tend to choose passwords either short or meaningful for easy memorization. With web applications and mobile apps piling up, people can access these applications anytime and anywhere with various devices. This evolution brings great convenience but also increases the probability of exposing passwords to shoulder surfing attacks. Attackers can observe directly or use external recording devices to collect users’ credentials. To overcome this problem, we proposed a novel authentication system PassMatrix, based on graphical passwords to resist shoulder surfing attacks. With a one-time valid login indicator and circulative horizontal and vertical bars covering the entire scope of pass-images, PassMatrix offers no hint for attackers to figure out or narrow down the password even they conduct multiple camera-based attacks. We also implemented a PassMatrix prototype on Android and carried out real user experiments to evaluate its memorability and usability. From the experimental result, the proposed system achieves better resistance to shoulder surfing attacks while maintaining usability

    An Advanced Knowledge Based Graphical Authentication Framework with Guaranteed Confidentiality and Integrity

    Get PDF
    The information and security systems largely rely on passwords,which remain the fundamental part of any authentication process. The conventional authentication method based on alphanumerical username and password suffer from significant disadvantages. The graphical password-based authentication system has recently been introduced as an effective alternative. Although the graphical schemes effectively generate the passwords with better flexibility and enhanced security, the most common problem with this is the shoulder surfing attack. This paper proposes an effective 3D graphical password authentication system to overcome such drawbacks. The system is based on the selection of click points for generating passwords. The proposed work involved a training phase for evaluating the model in terms of the success rate. The overall evaluations of the model in terms of password entropy, password space, login success rates, and prediction probability in the shoulder surfing and guessing attacks proved that the model is more confidential and maintains a higher range of integrity than the other existing models

    Authentication Schemes for Session Passwords Using Color and Images

    Full text link

    Secure and Usable User Authentication

    Get PDF
    Authentication is a ubiquitous task in users\u27 daily lives. The dominant form of user authentication are text passwords. They protect private accounts like online banking, gaming, and email, but also assets in organisations. Yet, many issues are associated with text passwords, leading to challenges faced by both, users and organisations. This thesis contributes to the body of research enabling secure and usable user authentication, benefiting both, users and organisations. To that end, it addresses three distinct challenges. The first challenge addressed in this thesis is the creation of correct, complete, understandable, and effective password security awareness materials. To this end, a systematic process for the creation of awareness materials was developed and applied to create a password security awareness material. This process comprises four steps. First, relevant content for an initial version is aggregated (i.e. descriptions of attacks on passwords and user accounts, descriptions of defences to these attacks, and common misconceptions about password and user account security). Then, feedback from information security experts is gathered to ensure the correctness and completeness of the awareness material. Thereafter, feedback from lay-users is gathered to ensure the understandability of the awareness material. Finally, a formal evaluation of the awareness material is conducted to ensure its effectiveness (i.e. whether the material improves participant\u27s ability to assess the security of passwords as well as password-related behaviour and decreases the prevalence of common misconceptions about password and user account security). The results of the evaluation show the effectiveness of the awareness material: it significantly improved the participants\u27 ability to assess the security of password-related behaviour as well as passwords and significantly decreased the prevalence of misconceptions about password and user account security. The second challenge addressed in this thesis is shoulder-surfing resistant text password entry with gamepads (as an example of very constrained input devices) in shared spaces. To this end, the very first investigation of text password entry with gamepads is conducted. First, the requirements of authentication in the gamepad context are described. Then, these requirements are applied to assess schemes already deployed in the gamepad context and shoulder-surfing resistant authentication schemes from the literature proposed for non-gamepad contexts. The results of this assessment show that none of the currently deployed and only four of the proposals in the literature fulfil all requirements. Furthermore, the results of the assessment also indicate a need for an empirical evaluation in order to exactly gauge the shoulder-surfing threat in the gamepad context and compare alternatives to the incumbent on-screen keyboard. Based on these results, two user studies (one online study and one lab study) are conducted to investigate the shoulder-surfing resistance and usability of three authentication schemes in the gamepad context: the on-screen keyboard (as de-facto standard in this context), the grid-based scheme (an existing proposal from the literature identified as the most viable candidate adaptable to the gamepad context during the assessment), and Colorwheels (a novel shoulder-surfing resistant authentication scheme specifically designed for the gamepad context). The results of these two user studies show that on-screen keyboards are highly susceptible to opportunistic shoulder-surfing, but also show the most favourable usability properties among the three schemes. Colorwheels offers the most robust shoulder-surfing resistance and scores highest with respect to participants\u27 intention to use it in the future, while showing more favourable usability results than the grid-based scheme. The third challenge addressed in this thesis is secure and efficient storage of passwords in portfolio authentication schemes. Portfolio authentication is used to counter capture attacks such as shoulder-surfing or eavesdropping on network traffic. While usability studies of portfolio authentication schemes showed promising results, a verification scheme which allows secure and efficient storage of the portfolio authentication secret had been missing until now. To remedy this problem, the (t,n)-threshold verification scheme is proposed. It is based on secret sharing and key derivation functions. The security as well as the efficiency properties of two variants of the scheme (one based on Blakley secret sharing and one based on Shamir secret sharing) are evaluated against each other and against a naive approach. These evaluations show that the two (t,n)-threshold verification scheme variants always exhibit more favourable properties than the naive approach and that when deciding between the two variants, the exact application scenario must be considered. Three use cases illustrate as exemplary application scenarios the versatility of the proposed (t,n)-threshold verification scheme. By addressing the aforementioned three distinct challenges, this thesis demonstrates the breadth of the field of usable and secure user authentication ranging from awareness materials, to the assessment and evaluation of authentication schemes, to applying cryptography to craft secure password storage solutions. The research processes, results, and insights described in this thesis represent important and meaningful contributions to the state of the art in the research on usable and secure user authentication, offering benefits for users, organisations, and researchers alike

    Seamless Security on Mobile Devices Textual Password Quantification Model Based Usability Evaluation of Secure Rotary Entry Pad Authentication

    Get PDF
    Mobile devices are vulnerable to shoulder surfing and smudge attacks, which should occur when a user enters a PIN for authentication purposes. This attack can be avoided by implementing a rotary entry pad mechanism. Despite this, several studies have found that using a rotary entry pad reduces user usability. This study uses a Design Research Methodology approach. It will implement a rotary entry pad authentication in the Android operating system as an authentication method to protect the device against Shoulder Surfing Attacks and Smudge Attacks. Furthermore, it combined JSON Web Token (JWT) to secure the authentication process from the client to the server. At the end of implementation, it compared with other studies in terms of usability and evaluated it using the TQ-Model, which showed that the usability aspect has improved. Regarding security, we conducted a shoulder surfing attack simulation to assess the efficacy of guessing PINs. The results showed that only a limited number of attempts were successful, with two out of five samples failing to guess any numbers and only one sample successfully guessing six 10-digit PIN combinations out of 10 to the power of 10. The security test results show that shoulder surfing attacks are more difficult to perform after implementing the rotary entry pad. The evaluation showed that the JSpinpad performed better, with seven parameters showing improvement, one parameter showing a decline, and ten parameters remaining unchanged
    • 

    corecore