850 research outputs found

    In Vitro Flow Modelling for Mitral Valve Leakage Quantification

    Get PDF
    In this study particle image velocimetry (PIV) is used to measure and visualise the blood flow through a leaking mitral heart valve. The results are compared with the results from Doppler echocardiography and computational fluid dynamics (CFD). Using CAD, five-axis milling and Rapid Prototyping Machining (RPM) technology, a hydraulic in vitro flow model was developed and constructed which is compatible with flow investigation with 2D normal speed PIV and 2D Doppler echocardiography. The same CAD model was used to conduct the CFD analysis. PIV results compared successfully with Doppler echo and CFD results, both in the upstream converging region and downstream the turbulent regurgitated jet zone. These results are expected to improve the assessment of mitral valve regurgitation severity with Doppler echocardiography in clinical practice

    Left Ventricular Trabeculations Decrease the Wall Shear Stress and Increase the Intra-Ventricular Pressure Drop in CFD Simulations

    Get PDF
    The aim of the present study is to characterize the hemodynamics of left ventricular (LV) geometries to examine the impact of trabeculae and papillary muscles (PMs) on blood flow using high performance computing (HPC). Five pairs of detailed and smoothed LV endocardium models were reconstructed from high-resolution magnetic resonance images (MRI) of ex-vivo human hearts. The detailed model of one LV pair is characterized only by the PMs and few big trabeculae, to represent state of art level of endocardial detail. The other four detailed models obtained include instead endocardial structures measuring ≥1 mm2 in cross-sectional area. The geometrical characterizations were done using computational fluid dynamics (CFD) simulations with rigid walls and both constant and transient flow inputs on the detailed and smoothed models for comparison. These simulations do not represent a clinical or physiological scenario, but a characterization of the interaction of endocardial structures with blood flow. Steady flow simulations were employed to quantify the pressure drop between the inlet and the outlet of the LVs and the wall shear stress (WSS). Coherent structures were analyzed using the Q-criterion for both constant and transient flow inputs. Our results show that trabeculae and PMs increase the intra-ventricular pressure drop, reduce the WSS and disrupt the dominant single vortex, usually present in the smoothed-endocardium models, generating secondary small vortices. Given that obtaining high resolution anatomical detail is challenging in-vivo, we propose that the effect of trabeculations can be incorporated into smoothed ventricular geometries by adding a porous layer along the LV endocardial wall. Results show that a porous layer of a thickness of 1.2·10−2 m with a porosity of 20 kg/m2 on the smoothed-endocardium ventricle models approximates the pressure drops, vorticities and WSS observed in the detailed models.This paper has been partially funded by CompBioMed project, under H2020-EU.1.4.1.3 European Union’s Horizon 2020 research and innovation programme, grant agreement n◦ 675451. FS is supported by a grant from Severo Ochoa (n◦ SEV-2015-0493-16-4), Spain. CB is supported by a grant from the Fundació LaMarató de TV3 (n◦ 20154031), Spain. TI and PI are supported by the Institute of Engineering in Medicine, USA, and the Lillehei Heart Institute, USA.Peer ReviewedPostprint (published version

    A finite strain nonlinear human mitral valve model with fluid structure interaction

    Get PDF
    A simulated human mitral valve under a physiological pressure loading is developed using a hybrid finite element immersed boundary method, which incorporates experimentally based constitutive laws in a three-dimensional fluid-structure interaction framework. A transversely isotropic material constitutive model is used for characterizing the mechanical behaviour of the mitral valve tissue based on recent mechanical tests of healthy human mitral leaflets. Our results show good agreement, in terms of the flow rate and the closing and opening configurations, with the measurements from the magnetic resonance images. The stresses in the anterior leaflet are found to be higher than those in the posterior leaflet, and concentrated around the annulus trigons and free edges of the valve leaflets. Those areas are located where the leaflet has the highest curvature. Effects of the chordae tendineae in the material model are studied and the results show that these chordae play an important role in providing a secondary orifice for the flow when valve opens. Although there are some discrepancies to be overcome in future works, our simulations show that the developed computational model is promising in mimicking the in vivo mitral valve dynamics and providing important information that are not obtainable by in vivo measurements. This article is protected by copyright. All rights reserved

    A Kinematic Approach for Efficient and Robust Simulation of the Cardiac Beating Motion

    Get PDF
    Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience. However, most existing methods require enormous computational costs and often show unstable behavior for extreme parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local regions as much as possible. A comparison between our method and a physics-based method showed that our method can generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and interactive applications

    Modified mass-spring system for physically based deformation modeling

    Get PDF
    Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented

    Modified mass-spring system for physically based deformation modeling

    Get PDF
    Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented
    • …
    corecore