45 research outputs found

    Novel Attacks and Defenses for Enterprise Internet-of-Things (E-IoT) Systems

    Get PDF
    This doctoral dissertation expands upon the field of Enterprise Internet-of-Things (E-IoT) systems, one of the most ubiquitous and under-researched fields of smart systems. E-IoT systems are specialty smart systems designed for sophisticated automation applications (e.g., multimedia control, security, lighting control). E-IoT systems are often closed source, costly, require certified installers, and are more robust for their specific applications. This dissertation begins with an analysis of the current E-IoT threat landscape and introduces three novel attacks and defenses under-studied software and protocols heavily linked to E-IoT systems. For each layer, we review the literature for the threats, attacks, and countermeasures. Based on the systematic knowledge we obtain from the literature review, we propose three novel attacks and countermeasures to protect E-IoT systems. In the first attack, we present PoisonIvy, several attacks developed to show that malicious E-IoT drivers can be used to compromise E-IoT. In response to PoisonIvy threats, we describe Ivycide, a machine-learning network-based solution designed to defend E-IoT systems against E-IoT driver threats. As multimedia control is a significant application of E-IoT, we introduce is HDMI-Walk, a novel attack vector designed to demonstrate that HDMI\u27s Consumer Electronics Control (CEC) protocol can be used to compromise multiple devices through a single connection. To defend devices from this threat, we introduce HDMI-Watch, a standalone intrusion detection system (IDS) designed to defend HDMI-enabled devices from HDMI-Walk-style attacks. Finally, this dissertation evaluates the security of E-IoT proprietary protocols with LightingStrike, a series of attacks used to demonstrate that popular E-IoT proprietary communication protocols are insecure. To address LightningStrike threats, we introduce LGuard, a complete defense framework designed to defend E-IoT systems from LightingStrike-style attacks using computer vision, traffic obfuscation, and traffic analysis techniques. For each contribution, all of the defense mechanisms proposed are implemented without any modification to the underlying hardware or software. All attacks and defenses in this dissertation were performed with implementations on widely-used E-IoT devices and systems. We believe that the research presented in this dissertation has notable implications on the security of E-IoT systems by exposing novel threat vectors, raising awareness, and motivating future E-IoT system security research

    Dynamic monitoring of Android malware behavior: a DNS-based approach

    Get PDF
    The increasing technological revolution of the mobile smart devices fosters their wide use. Since mobile users rely on unofficial or thirdparty repositories in order to freely install paid applications, lots of security and privacy issues are generated. Thus, at the same time that Android phones become very popular and growing rapidly their market share, so it is the number of malicious applications targeting them. Yet, current mobile malware detection and analysis technologies are very limited and ineffective. Due to the particular traits of mobile devices such as the power consumption constraints that make unaffordable to run traditional PC detection engines on the device; therefore mobile security faces new challenges, especially on dynamic runtime malware detection. This approach is import because many instructions or infections could happen after an application is installed or executed. On the one hand, recent studies have shown that the network-based analysis, where applications could be also analyzed by observing the network traffic they generate, enabling us to detect malicious activities occurring on the smart device. On the other hand, the aggressors rely on DNS to provide adjustable and resilient communication between compromised client machines and malicious infrastructure. So, having rich DNS traffic information is very important to identify malevolent behavior, then using DNS for malware detection is a logical step in the dynamic analysis because malicious URLs are common and the present danger for cybersecurity. Therefore, the main goal of this thesis is to combine and correlate two approaches: top-down detection by identifying malware domains using DNS traces at the network level, and bottom-up detection at the device level using the dynamic analysis in order to capture the URLs requested on a number of applications to pinpoint the malware. For malware detection and visualization, we propose a system which is based on dynamic analysis of API calls. Thiscan help Android malware analysts in visually inspecting what the application under study does, easily identifying such malicious functions. Moreover, we have also developed a framework that automates the dynamic DNS analysis of Android malware where the captured URLs at the smartphone under scrutiny are sent to a remote server where they are: collected, identified within the DNS server records, mapped the extracted DNS records into this server in order to classify them either as benign or malicious domain. The classification is done through the usage of machine learning. Besides, the malicious URLs found are used in order to track and pinpoint other infected smart devices, not currently under monitoring

    Advanced Security Analysis for Emergent Software Platforms

    Get PDF
    Emergent software ecosystems, boomed by the advent of smartphones and the Internet of Things (IoT) platforms, are perpetually sophisticated, deployed into highly dynamic environments, and facilitating interactions across heterogeneous domains. Accordingly, assessing the security thereof is a pressing need, yet requires high levels of scalability and reliability to handle the dynamism involved in such volatile ecosystems. This dissertation seeks to enhance conventional security detection methods to cope with the emergent features of contemporary software ecosystems. In particular, it analyzes the security of Android and IoT ecosystems by developing rigorous vulnerability detection methods. A critical aspect of this work is the focus on detecting vulnerable and unsafe interactions between applications that share common components and devices. Contributions of this work include novel insights and methods for: (1) detecting vulnerable interactions between Android applications that leverage dynamic loading features for concealing the interactions; (2) identifying unsafe interactions between smart home applications by considering physical and cyber channels; (3) detecting malicious IoT applications that are developed to target numerous IoT devices; (4) detecting insecure patterns of emergent security APIs that are reused from open-source software. In all of the four research thrusts, we present thorough security analysis and extensive evaluations based on real-world applications. Our results demonstrate that the proposed detection mechanisms can efficiently and effectively detect vulnerabilities in contemporary software platforms. Advisers: Hamid Bagheri and Qiben Ya

    TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE INTRUSION DETECTION SYSTEM USING NEWLY GENERATED HETEROGENEOUS DATASETS

    Get PDF
    With the exponential growth of network-based applications globally, there has been a transformation in organizations\u27 business models. Furthermore, cost reduction of both computational devices and the internet have led people to become more technology dependent. Consequently, due to inordinate use of computer networks, new risks have emerged. Therefore, the process of improving the speed and accuracy of security mechanisms has become crucial.Although abundant new security tools have been developed, the rapid-growth of malicious activities continues to be a pressing issue, as their ever-evolving attacks continue to create severe threats to network security. Classical security techniquesfor instance, firewallsare used as a first line of defense against security problems but remain unable to detect internal intrusions or adequately provide security countermeasures. Thus, network administrators tend to rely predominantly on Intrusion Detection Systems to detect such network intrusive activities. Machine Learning is one of the practical approaches to intrusion detection that learns from data to differentiate between normal and malicious traffic. Although Machine Learning approaches are used frequently, an in-depth analysis of Machine Learning algorithms in the context of intrusion detection has received less attention in the literature.Moreover, adequate datasets are necessary to train and evaluate anomaly-based network intrusion detection systems. There exist a number of such datasetsas DARPA, KDDCUP, and NSL-KDDthat have been widely adopted by researchers to train and evaluate the performance of their proposed intrusion detection approaches. Based on several studies, many such datasets are outworn and unreliable to use. Furthermore, some of these datasets suffer from a lack of traffic diversity and volumes, do not cover the variety of attacks, have anonymized packet information and payload that cannot reflect the current trends, or lack feature set and metadata.This thesis provides a comprehensive analysis of some of the existing Machine Learning approaches for identifying network intrusions. Specifically, it analyzes the algorithms along various dimensionsnamely, feature selection, sensitivity to the hyper-parameter selection, and class imbalance problemsthat are inherent to intrusion detection. It also produces a new reliable dataset labeled Game Theory and Cyber Security (GTCS) that matches real-world criteria, contains normal and different classes of attacks, and reflects the current network traffic trends. The GTCS dataset is used to evaluate the performance of the different approaches, and a detailed experimental evaluation to summarize the effectiveness of each approach is presented. Finally, the thesis proposes an ensemble classifier model composed of multiple classifiers with different learning paradigms to address the issue of detection accuracy and false alarm rate in intrusion detection systems

    Optimized Monitoring and Detection of Internet of Things resources-constraints Cyber Attacks

    Get PDF
    This research takes place in the context of the optimized monitoring and detec- tion of Internet of Things (IoT) resource-constraints attacks. Meanwhile, the In- ternet of Everything (IoE) concept is presented as a wider extension of IoT. How- ever, the IoE realization meets critical challenges, including the limited network coverage and the limited resources of existing network technologies and smart devices. The IoT represents a network of embedded devices that are uniquely identifiable and have embedded software required to communicate between the transient states. The IoT enables a connection between billions of sensors, actu- ators, and even human beings to the Internet, creating a wide range of services, some of which are mission-critical. However, IoT networks are faulty; things are resource-constrained in terms of energy and computational capabilities. For IoT systems performing a critical mission, it is crucial to ensure connectivity, availability, and device reliability, which requires proactive device state moni- toring. This dissertation presents an approach to optimize the monitoring and detection of resource-constraints attacks in IoT and IoE smart devices. First, it has been shown that smart devices suffer from resource-constraints problems; therefore, using lightweight algorithms to detect and mitigate the resource-constraints at- tack is essential. Practical analysis and monitoring of smart device resources’ are included and discussed to understand the behaviour of the devices before and after attacking real smart devices. These analyses are straightforwardly extended for building lightweight detection and mitigation techniques against energy and memory attacks. Detection of energy consumption attacks based on monitoring the package reception rate of smart devices is proposed to de- tect energy attacks in smart devices effectively. The proposed lightweight algo- rithm efficiently detects energy attacks for different protocols, e.g., TCP, UDP, and MQTT. Moreover, analyzing memory usage attacks is also considered in this thesis. Therefore, another lightweight algorithm is also built to detect the memory-usage attack once it appears and stops. This algorithm considers mon- itoring the memory usage of the smart devices when the smart devices are Idle, Active, and Under attack. Based on the presented methods and monitoring analysis, the problem of resource-constraint attacks in IoT systems is systemat- ically eliminated by parameterizing the lightweight algorithms to adapt to the resource-constraint problems of the smart devices

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    Software-Defined Networking: A Comprehensive Survey

    Get PDF
    peer reviewedThe Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this - ew paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment

    Acta Cybernetica : Volume 21. Number 3.

    Get PDF
    corecore