194 research outputs found

    Improvement of PolSAR Decomposition Scattering Powers Using a Relative Decorrelation Measure

    Full text link
    In this letter, a methodology is proposed to improve the scattering powers obtained from model-based decomposition using Polarimetric Synthetic Aperture Radar (PolSAR) data. The novelty of this approach lies in utilizing the intrinsic information in the off-diagonal elements of the 3×\times3 coherency matrix T\mathbf{T} represented in the form of complex correlation coefficients. Two complex correlation coefficients are computed between co-polarization and cross-polarization components of the Pauli scattering vector. The difference between modulus of complex correlation coefficients corresponding to Topt\mathbf{T}^{\mathrm{opt}} (i.e. the degree of polarization (DOP) optimized coherency matrix), and T\mathbf{T} (original) matrices is obtained. Then a suitable scaling is performed using fractions \emph{i.e.,} (Tiiopt/i=13Tiiopt)(T_{ii}^{\mathrm{opt}}/\sum\limits_{i=1}^{3}T_{ii}^{\mathrm{opt}}) obtained from the diagonal elements of the Topt\mathbf{T}^{\mathrm{opt}} matrix. Thereafter, these new quantities are used in modifying the Yamaguchi 4-component scattering powers obtained from Topt\mathbf{T}^{\mathrm{opt}}. To corroborate the fact that these quantities have physical relevance, a quantitative analysis of these for the L-band AIRSAR San Francisco and the L-band Kyoto images is illustrated. Finally, the scattering powers obtained from the proposed methodology are compared with the corresponding powers obtained from the Yamaguchi \emph{et. al.,} 4-component (Y4O) decomposition and the Yamaguchi \emph{et. al.,} 4-component Rotated (Y4R) decomposition for the same data sets. The proportion of negative power pixels is also computed. The results show an improvement on all these attributes by using the proposed methodology.Comment: Accepted for publication in Remote Sensing Letter

    Modifying the Yamaguchi Four-Component Decomposition Scattering Powers Using a Stochastic Distance

    Full text link
    Model-based decompositions have gained considerable attention after the initial work of Freeman and Durden. This decomposition which assumes the target to be reflection symmetric was later relaxed in the Yamaguchi et al. decomposition with the addition of the helix parameter. Since then many decomposition have been proposed where either the scattering model was modified to fit the data or the coherency matrix representing the second order statistics of the full polarimetric data is rotated to fit the scattering model. In this paper we propose to modify the Yamaguchi four-component decomposition (Y4O) scattering powers using the concept of statistical information theory for matrices. In order to achieve this modification we propose a method to estimate the polarization orientation angle (OA) from full-polarimetric SAR images using the Hellinger distance. In this method, the OA is estimated by maximizing the Hellinger distance between the un-rotated and the rotated T33T_{33} and the T22T_{22} components of the coherency matrix [T]\mathbf{[T]}. Then, the powers of the Yamaguchi four-component model-based decomposition (Y4O) are modified using the maximum relative stochastic distance between the T33T_{33} and the T22T_{22} components of the coherency matrix at the estimated OA. The results show that the overall double-bounce powers over rotated urban areas have significantly improved with the reduction of volume powers. The percentage of pixels with negative powers have also decreased from the Y4O decomposition. The proposed method is both qualitatively and quantitatively compared with the results obtained from the Y4O and the Y4R decompositions for a Radarsat-2 C-band San-Francisco dataset and an UAVSAR L-band Hayward dataset.Comment: Accepted for publication in IEEE J-STARS (IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

    Classification of Polarimetric SAR Images Using Compact Convolutional Neural Networks

    Get PDF
    Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing highly discriminative features to improve the classification performance, but this task is complicated by the well-known "curse of dimensionality" phenomena. Other approaches based on deep Convolutional Neural Networks (CNNs) have certain limitations and drawbacks, such as high computational complexity, an unfeasibly large training set with ground-truth labels, and special hardware requirements. In this work, to address the limitations of traditional ML and deep CNN based methods, a novel and systematic classification framework is proposed for the classification of PolSAR images, based on a compact and adaptive implementation of CNNs using a sliding-window classification approach. The proposed approach has three advantages. First, there is no requirement for an extensive feature extraction process. Second, it is computationally efficient due to utilized compact configurations. In particular, the proposed compact and adaptive CNN model is designed to achieve the maximum classification accuracy with minimum training and computational complexity. This is of considerable importance considering the high costs involved in labelling in PolSAR classification. Finally, the proposed approach can perform classification using smaller window sizes than deep CNNs. Experimental evaluations have been performed over the most commonly-used four benchmark PolSAR images: AIRSAR L-Band and RADARSAT-2 C-Band data of San Francisco Bay and Flevoland areas. Accordingly, the best obtained overall accuracies range between 92.33 - 99.39% for these benchmark study sites

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin
    corecore