3,461 research outputs found

    A Neutrosophic Description Logic

    Full text link
    Description Logics (DLs) are appropriate, widely used, logics for managing structured knowledge. They allow reasoning about individuals and concepts, i.e. set of individuals with common properties. Typically, DLs are limited to dealing with crisp, well defined concepts. That is, concepts for which the problem whether an individual is an instance of it is yes/no question. More often than not, the concepts encountered in the real world do not have a precisely defined criteria of membership: we may say that an individual is an instance of a concept only to a certain degree, depending on the individual's properties. The DLs that deal with such fuzzy concepts are called fuzzy DLs. In order to deal with fuzzy, incomplete, indeterminate and inconsistent concepts, we need to extend the fuzzy DLs, combining the neutrosophic logic with a classical DL. In particular, concepts become neutrosophic (here neutrosophic means fuzzy, incomplete, indeterminate, and inconsistent), thus reasoning about neutrosophic concepts is supported. We'll define its syntax, its semantics, and describe its properties.Comment: 18 pages. Presented at the IEEE International Conference on Granular Computing, Georgia State University, Atlanta, USA, May 200

    Decidable Reasoning in Terminological Knowledge Representation Systems

    Get PDF
    Terminological knowledge representation systems (TKRSs) are tools for designing and using knowledge bases that make use of terminological languages (or concept languages). We analyze from a theoretical point of view a TKRS whose capabilities go beyond the ones of presently available TKRSs. The new features studied, often required in practical applications, can be summarized in three main points. First, we consider a highly expressive terminological language, called ALCNR, including general complements of concepts, number restrictions and role conjunction. Second, we allow to express inclusion statements between general concepts, and terminological cycles as a particular case. Third, we prove the decidability of a number of desirable TKRS-deduction services (like satisfiability, subsumption and instance checking) through a sound, complete and terminating calculus for reasoning in ALCNR-knowledge bases. Our calculus extends the general technique of constraint systems. As a byproduct of the proof, we get also the result that inclusion statements in ALCNR can be simulated by terminological cycles, if descriptive semantics is adopted.Comment: See http://www.jair.org/ for any accompanying file

    Practical Reasoning for Very Expressive Description Logics

    Full text link
    Description Logics (DLs) are a family of knowledge representation formalisms mainly characterised by constructors to build complex concepts and roles from atomic ones. Expressive role constructors are important in many applications, but can be computationally problematical. We present an algorithm that decides satisfiability of the DL ALC extended with transitive and inverse roles and functional restrictions with respect to general concept inclusion axioms and role hierarchies; early experiments indicate that this algorithm is well-suited for implementation. Additionally, we show that ALC extended with just transitive and inverse roles is still in PSPACE. We investigate the limits of decidability for this family of DLs, showing that relaxing the constraints placed on the kinds of roles used in number restrictions leads to the undecidability of all inference problems. Finally, we describe a number of optimisation techniques that are crucial in obtaining implementations of the decision procedures, which, despite the worst-case complexity of the problem, exhibit good performance with real-life problems

    An empirical analysis of terminological representation systems

    Get PDF
    The family of terminological representation systems has its roots in the representation system KL-ONE. Since the development of this system more than a dozen similar representation systems have been developed by various research groups. These systems vary along a number of dimensions.In this paper, we present the results of an empirical analysis of six such systems. Surprisingly, the systems turned out to be quite diverse leading to problems when transporting knowledge bases from one system to another. Additionally, the runtime performance between different systems and knowledge bases varied more than we expected. Finally, our empirical runtime performance results give an idea of what runtime performance to expect from such representation systems. These findings complement previously reported analytical results about the computational complexity of reasoning in such systems

    CTL : a description logic with expressive concrete domains

    Get PDF
    Compared with frame-based systems, description logics have the advantage of well-defined semantics and powerful inferences. In order to exploit these advantages in technical domains, the ability to use concrete domains is needed, e.g. systems of (in)equalities over (non)linear polynomials to handle physical laws. Existing systems can only cope with comparisons between attributes. We present an approach that considerably improves the expressiveness of the concrete domains. CTL (Configurable (or Constraint-based) Terminological Logic) is based on the ideas presented in [Baader, F. & Hanschke, P. 1991] and [Hanschke, P. 1993]. Concrete domains are realised through a well-defined interface to external algorithms. Constraint Logic Programming (CLP) systems allow us to easily realise a whole range of concrete domains, e.g. over sets of symbols and numbers. In particular, we are able to handle systems of arbitrary linear polynomials. They also enable us to automatically participate in recent and future improvements in the areas of CLP and computer algebra, e.g. systems capable of handling arbitrary non-linear polynomials
    corecore