771 research outputs found

    The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity.

    Get PDF
    The superficial layers of the medial entorhinal cortex (MEC) are a major input to the hippocampus. The high proportion of spatially modulated cells, including grid cells and border cells, in these layers suggests that MEC inputs are critical for the representation of space in the hippocampus. However, selective manipulations of the MEC do not completely abolish hippocampal spatial firing. To determine whether other hippocampal firing characteristics depend more critically on MEC inputs, we recorded from hippocampal CA1 cells in rats with MEC lesions. Theta phase precession was substantially disrupted, even during periods of stable spatial firing. Our findings indicate that MEC inputs to the hippocampus are required for the temporal organization of hippocampal firing patterns and suggest that cognitive functions that depend on precise neuronal sequences in the hippocampal theta cycle are particularly dependent on the MEC

    Single-Trial Phase Precession in the Hippocampus

    Get PDF
    During the crossing of the place field of a pyramidal cell in the rat hippocampus, the firing phase of the cell decreases with respect to the local theta rhythm. This phase precession is usually studied on the basis of data in which many place field traversals are pooled together. Here we study properties of phase precession in single trials. We found that single-trial and pooled-trial phase precession were different with respect to phase-position correlation, phase-time correlation, and phase range. Whereas pooled-trial phase precession may span 360°, the most frequent single-trial phase range was only ∼180°. In pooled trials, the correlation between phase and position (r = −0.58) was stronger than the correlation between phase and time (r = −0.27), whereas in single trials these correlations (r = −0.61 for both) were not significantly different. Next, we demonstrated that phase precession exhibited a large trial-to-trial variability. Overall, only a small fraction of the trial-to-trial variability in measures of phase precession (e.g., slope or offset) could be explained by other single-trial properties (such as running speed or firing rate), whereas the larger part of the variability remains to be explained. Finally, we found that surrogate single trials, created by randomly drawing spikes from the pooled data, are not equivalent to experimental single trials: pooling over trials therefore changes basic measures of phase precession. These findings indicate that single trials may be better suited for encoding temporally structured events than is suggested by the pooled data

    Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network.

    Get PDF
    Grid cells fire in sequences that represent rapid trajectories in space. During locomotion, theta sequences encode sweeps in position starting slightly behind the animal and ending ahead of it. During quiescence and slow wave sleep, bouts of synchronized activity represent long trajectories called replays, which are well-established in place cells and have been recently reported in grid cells. Theta sequences and replay are hypothesized to facilitate many cognitive functions, but their underlying mechanisms are unknown. One mechanism proposed for grid cell formation is the continuous attractor network. We demonstrate that this established architecture naturally produces theta sequences and replay as distinct consequences of modulating external input. Driving inhibitory interneurons at the theta frequency causes attractor bumps to oscillate in speed and size, which gives rise to theta sequences and phase precession, respectively. Decreasing input drive to all neurons produces traveling wavefronts of activity that are decoded as replays

    Segregation of cortical head direction cell assemblies on alternating theta cycles

    Get PDF
    High-level cortical systems for spatial navigation, including entorhinal grid cells, critically depend on input from the head direction system. We examined spiking rhythms and modes of synchrony between neurons participating in head direction networks for evidence of internal processing, independent of direct sensory drive, which may be important for grid cell function. We found that head direction networks of rats were segregated into at least two populations of neurons firing on alternate theta cycles (theta cycle skipping) with fixed synchronous or anti-synchronous relationships. Pairs of anti-synchronous theta cycle skipping neurons exhibited larger differences in head direction tuning, with a minimum difference of 40 degrees of head direction. Septal inactivation preserved the head direction signal, but eliminated theta cycle skipping of head direction cells and grid cell spatial periodicity. We propose that internal mechanisms underlying cycle skipping in head direction networks may be critical for downstream spatial computation by grid cells.We kindly thank S. Gillet, J. Hinman, E. Newman and L. Ewell for their invaluable consultations and comments on previous versions of this manuscript, as well as M. Connerney, S. Eriksson, C. Libby and T. Ware for technical assistance and behavioral training. This work was supported by grants from the National Institute of Mental Health (R01 MH60013 and MH61492) and the Office of Naval Research Multidisciplinary University Research Initiative (N00014-10-1-0936). (R01 MH60013 - National Institute of Mental Health; MH61492 - National Institute of Mental Health; N00014-10-1-0936 - Office of Naval Research Multidisciplinary University Research Initiative)Accepted manuscrip

    A Circuit-Level Model of Hippocampal Place Field Dynamics Modulated by Entorhinal Grid and Suppression-Generating Cells

    Get PDF
    Hippocampal “place cells” and the precession of their extracellularly recorded spiking during traversal of a “place field” are well-established phenomena. More recent experiments describe associated entorhinal “grid cell” firing, but to date only conceptual models have been offered to explain the potential interactions among entorhinal cortex (EC) and hippocampus. To better understand not only spatial navigation, but mechanisms of episodic and semantic memory consolidation and reconsolidation, more detailed physiological models are needed to guide confirmatory experiments. Here, we report the results of a putative entorhinal-hippocampal circuit level model that incorporates recurrent asynchronous-irregular non-linear (RAIN) dynamics, in the context of recent in vivo findings showing specific intracellular–extracellular precession disparities and place field destabilization by entorhinal lesioning. In particular, during computer-simulated rodent maze navigation, our model demonstrate asymmetric ramp-like depolarization, increased theta power, and frequency (that can explain the phase precession disparity), and a role for STDP and KAHP channels. Additionally, we propose distinct roles for two entorhinal cell populations projecting to hippocampus. Grid cell populations transiently trigger place field activity, while tonic “suppression-generating cell” populations minimize aberrant place cell activation, and limit the number of active place cells during traversal of a given field. Applied to place-cell RAIN networks, this tonic suppression explains an otherwise seemingly discordant association with overall increased firing. The findings of this circuit level model suggest in vivo and in vitro experiments that could refute or support the proposed mechanisms of place cell dynamics and modulating influences of EC

    The role of medial entorhinal cortex activity in hippocampal CA1 spatiotemporally correlated sequence generation and object selectivity for memory function

    Full text link
    The hippocampus is crucial for episodic memory and certain forms of spatial navigation. Firing activity of hippocampal principal neurons contains environmental information, including the presence of specific objects, as well as the animal’s spatial and temporal position relative to environmental and behavioral cues. The organization of these firing correlates may allow the formation of memory traces through the integration of object and event information onto a spatiotemporal framework of cell assemblies. Characterizing how external inputs guide internal dynamics in the hippocampus to enable this process across different experiences is crucial to understanding hippocampal function. A body of literature implicates the medial entorhinal cortex (MEC) in supplying spatial and temporal information to the hippocampus. Here we develop a protocol utilizing bilaterally implanted custom designed triple fiber optic arrays and the red-shifted inhibitory opsin JAWS to transiently inactivate large volumes of MEC in freely behaving rats. This was coupled with extracellular tetrode recording of ensembles in CA1 of the hippocampus during a novel memory task involving temporal, spatial and object related epochs, in order to assess the importance of MEC activity for hippocampal feature selectivity during a rich and familiar experience. We report that inactivation of MEC during a mnemonic temporal delay disrupts the existing temporal firing field sequence in CA1 both during and following the inactivation period. Neurons with firing fields prior to the inactivation on each trial remained relatively stable. The disruption of CA1 temporal firing field sequences was accompanied by a behavioral deficit implicating MEC activity and hippocampal temporal field sequences in effective memory across time. Inactivating MEC during the object or spatial epochs of the task did not significantly alter CA1 object selective or spatial firing fields and behavioral performance remained stable. Our findings suggest that MEC is crucial specifically for temporal field organization and expression during a familiar and rich experience. These results support a role for MEC in guiding hippocampal cell assembly sequences in the absence of salient changing stimuli, which may extend to the navigation of cognitive organization in humans and support memory formation and retrieval

    Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.

    Get PDF
    The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain

    Oscillatory Tracking of Continuous Attractor Neural Networks Account for Phase Precession and Procession of Hippocampal Place Cells

    Get PDF
    Hippocampal place cells of freely moving rodents display an intriguing temporal organization in their responses known as 'theta phase precession', in which individual neurons fire at progressively earlier phases in successive theta cycles as the animal traverses the place fields. Recent experimental studies found that in addition to phase precession, many place cells also exhibit accompanied phase procession, but the underlying neural mechanism remains unclear. Here, we propose a neural circuit model to elucidate the generation of both kinds of phase shift in place cells' firing. Specifically, we consider a continuous attractor neural network (CANN) with feedback inhibition, which is inspired by the reciprocal interaction between the hippocampus and the medial septum. The feedback inhibition induces intrinsic mobility of the CANN which competes with the extrinsic mobility arising from the external drive. Their interplay generates an oscillatory tracking state, that is, the network bump state (resembling the decoded virtual position of the animal) sweeps back and forth around the external moving input (resembling the physical position of the animal). We show that this oscillatory tracking naturally explains the forward and backward sweeps of the decoded position during the animal's locomotion. At the single neuron level, the forward and backward sweeps account for, respectively, theta phase precession and procession. Furthermore, by tuning the feedback inhibition strength, we also explain the emergence of bimodal cells and unimodal cells, with the former having co-existed phase precession and procession, and the latter having only significant phase precession. We hope that this study facilitates our understanding of hippocampal temporal coding and lays foundation for unveiling their computational functions
    corecore