24,067 research outputs found

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    A logic programming framework for modeling temporal objects

    Get PDF
    Published versio

    A General Framework for Representing, Reasoning and Querying with Annotated Semantic Web Data

    Full text link
    We describe a generic framework for representing and reasoning with annotated Semantic Web data, a task becoming more important with the recent increased amount of inconsistent and non-reliable meta-data on the web. We formalise the annotated language, the corresponding deductive system and address the query answering problem. Previous contributions on specific RDF annotation domains are encompassed by our unified reasoning formalism as we show by instantiating it on (i) temporal, (ii) fuzzy, and (iii) provenance annotations. Moreover, we provide a generic method for combining multiple annotation domains allowing to represent, e.g. temporally-annotated fuzzy RDF. Furthermore, we address the development of a query language -- AnQL -- that is inspired by SPARQL, including several features of SPARQL 1.1 (subqueries, aggregates, assignment, solution modifiers) along with the formal definitions of their semantics

    From RT-LOTOS to Time Petri Nets new foundations for a verification platform

    Get PDF
    The formal description technique RT-LOTOS has been selected as intermediate language to add formality to a real-time UML profile named TURTLE. For this sake, an RT-LOTOS verification platform has been developed for early detection of design errors in real-time system models. The paper discusses an extension of the platform by inclusion of verification tools developed for Time Petri Nets. The starting point is the definition of RT-LOTOS to TPN translation patterns. In particular, we introduce the concept of components embedding Time Petri Nets. The translation patterns are implemented in a prototype tool which takes as input an RT-LOTOS specification and outputs a TPN in the format admitted by the TINA tool. The efficiency of the proposed solution has been demonstrated on various case studies

    Proving Properties of Rich Internet Applications

    Full text link
    We introduce application layer specifications, which allow us to reason about the state and transactions of rich Internet applications. We define variants of the state/event based logic UCTL* along with two example applications to demonstrate this approach, and then look at a distributed, rich Internet application, proving properties about the information it stores and disseminates. Our approach enables us to justify proofs about abstract properties that are preserved in the face of concurrent, networked inputs by proofs about concrete properties in an Internet setting. We conclude that our approach makes it possible to reason about the programs and protocols that comprise the Internet's application layer with reliability and generality.Comment: In Proceedings WWV 2013, arXiv:1308.026

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    corecore