24,407 research outputs found

    Towards the specification and verification of modal properties for structured systems

    Get PDF
    System specification formalisms should come with suitable property specification languages and effective verification tools. We sketch a framework for the verification of quantified temporal properties of systems with dynamically evolving structure. We consider visual specification formalisms like graph transformation systems (GTS) where program states are modelled as graphs, and the program behavior is specified by graph transformation rules. The state space of a GTS can be represented as a graph transition system (GTrS), i.e. a transition system with states and transitions labelled, respectively, with a graph, and with a partial morphism representing the evolution of state components. Unfortunately, GTrSs are prohibitively large or infinite even for simple systems, making verification intractable and hence calling for appropriate abstraction techniques

    Towards a Maude tool for model checking temporal graph properties

    Get PDF
    We present our prototypical tool for the verification of graph transformation systems. The major novelty of our tool is that it provides a model checker for temporal graph properties based on counterpart semantics for quantified m-calculi. Our tool can be considered as an instantiation of our approach to counterpart semantics which allows for a neat handling of creation, deletion and merging in systems with dynamic structure. Our implementation is based on the object-based machinery of Maude, which provides the basics to deal with attributed graphs. Graph transformation systems are specified with term rewrite rules. The model checker evaluates logical formulae of second-order modal m-calculus in the automatically generated CounterpartModel (a sort of unfolded graph transition system) of the graph transformation system under study. The result of evaluating a formula is a set of assignments for each state, associating node variables to actual nodes

    Counterpart semantics for a second-order mu-calculus

    Get PDF
    We propose a novel approach to the semantics of quantified Ī¼-calculi, considering models where states are algebras; the evolution relation is given by a counterpart relation (a family of partial homomorphisms), allowing for the creation, deletion, and merging of components; and formulas are interpreted over sets of state assignments (families of substitutions, associating formula variables to state components). Our proposal avoids the limitations of existing approaches, usually enforcing restrictions of the evolution relation: the resulting semantics is a streamlined and intuitively appealing one, yet it is general enough to cover most of the alternative proposals we are aware of

    Graphical Verification of a Spatial Logic for the Graphical Verification of a Spatial Logic for the pi-calculus

    Get PDF
    The paper introduces a novel approach to the verification of spatial properties for finite [pi]-calculus specifications. The mechanism is based on a recently proposed graphical encoding for mobile calculi: Each process is mapped into a (ranked) graph, such that the denotation is fully abstract with respect to the usual structural congruence (i.e., two processes are equivalent exactly when the corresponding encodings yield the same graph). Spatial properties for reasoning about the behavior and the structure of pi-calculus processes are then expressed in a logic introduced by Caires, and they are verified on the graphical encoding of a process, rather than on its textual representation. More precisely, the graphical presentation allows for providing a simple and easy to implement verification algorithm based on the graphical encoding (returning true if and only if a given process verifies a given spatial formula)

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks

    Graphical Encoding of a Spatial Logic for the pi-Calculus

    Get PDF
    This paper extends our graph-based approach to the verification of spatial properties of Ļ€-calculus specifications. The mechanism is based on an encoding for mobile calculi where each process is mapped into a graph (with interfaces) such that the denotation is fully abstract with respect to the usual structural congruence, i.e., two processes are equivalent exactly when the corresponding encodings yield isomorphic graphs. Behavioral and structural properties of Ļ€-calculus processes expressed in a spatial logic can then be verified on the graphical encoding of a process rather than on its textual representation. In this paper we introduce a modal logic for graphs and define a translation of spatial formulae such that a process verifies a spatial formula exactly when its graphical representation verifies the translated modal graph formula

    Specifying and Executing Optimizations for Parallel Programs

    Full text link
    Compiler optimizations, usually expressed as rewrites on program graphs, are a core part of all modern compilers. However, even production compilers have bugs, and these bugs are difficult to detect and resolve. The problem only becomes more complex when compiling parallel programs; from the choice of graph representation to the possibility of race conditions, optimization designers have a range of factors to consider that do not appear when dealing with single-threaded programs. In this paper we present PTRANS, a domain-specific language for formal specification of compiler transformations, and describe its executable semantics. The fundamental approach of PTRANS is to describe program transformations as rewrites on control flow graphs with temporal logic side conditions. The syntax of PTRANS allows cleaner, more comprehensible specification of program optimizations; its executable semantics allows these specifications to act as prototypes for the optimizations themselves, so that candidate optimizations can be tested and refined before going on to include them in a compiler. We demonstrate the use of PTRANS to state, test, and refine the specification of a redundant store elimination optimization on parallel programs.Comment: In Proceedings GRAPHITE 2014, arXiv:1407.767

    Program transformations using temporal logic side conditions

    Get PDF
    This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program

    A formal verification framework and associated tools for enterprise modeling : application to UEML

    Get PDF
    The aim of this paper is to propose and apply a verification and validation approach to Enterprise Modeling that enables the user to improve the relevance and correctness, the suitability and coherence of a model by using properties specification and formal proof of properties
    • ā€¦
    corecore