354,524 research outputs found

    Learning to automatically detect features for mobile robots using second-order Hidden Markov Models

    Get PDF
    In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks) are their ability to model noisy temporal signals of variable length. We show in this paper that this approach is well suited for interpretation of temporal sequences of mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor environment where a mobile robot learns to detect features like open doors or T-intersections, the second one in an outdoor environment where a different mobile robot has to identify situations like climbing a hill or crossing a rock.Comment: 200

    Segmentation of the evolving left ventricle by learning the dynamics

    Get PDF
    We propose a method for recursive segmentation of the left ventricle (LV) across a temporal sequence of magnetic resonance (MR) images. The approach involves a technique for learning the LV boundary dynamics together with a particle-based inference algorithm on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and boundary estimation involves incorporating curve evolution into state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. We assess and demonstrate the effectiveness of the proposed framework on a large data set of breath-hold cardiac MR image sequences

    Temporal network sparsity and the slowing down of spreading

    Full text link
    Interactions in time-varying complex systems are often very heterogeneous at the topological level (who interacts with whom) and at the temporal level (when interactions occur and how often). While it is known that temporal heterogeneities often have strong effects on dynamical processes, e.g. the burstiness of contact sequences is associated with slower spreading dynamics, the picture is far from complete. In this paper, we show that temporal heterogeneities result in temporal sparsity} at the time scale of average inter-event times, and that temporal sparsity determines the amount of slowdown of Susceptible-Infectious (SI) spreading dynamics on temporal networks. This result is based on the analysis of several empirical temporal network data sets. An approximate solution for a simple network model confirms the association between temporal sparsity and slowdown of SI spreading dynamics. Since deterministic SI spreading always follows the fastest temporal paths, our results generalize -- paths are slower to traverse because of temporal sparsity, and therefore all dynamical processes are slower as well

    Discounting of reward sequences: a test of competing formal models of hyperbolic discounting

    Get PDF
    Humans are known to discount future rewards hyperbolically in time. Nevertheless, a formal recursive model of hyperbolic discounting has been elusive until recently, with the introduction of the hyperbolically discounted temporal difference (HDTD) model. Prior to that, models of learning (especially reinforcement learning) have relied on exponential discounting, which generally provides poorer fits to behavioral data. Recently, it has been shown that hyperbolic discounting can also be approximated by a summed distribution of exponentially discounted values, instantiated in the μAgents model. The HDTD model and the μAgents model differ in one key respect, namely how they treat sequences of rewards. The μAgents model is a particular implementation of a Parallel discounting model, which values sequences based on the summed value of the individual rewards whereas the HDTD model contains a non-linear interaction. To discriminate among these models, we observed how subjects discounted a sequence of three rewards, and then we tested how well each candidate model fit the subject data. The results show that the Parallel model generally provides a better fit to the human data

    A hierarchy of recurrent networks for speech recognition

    Get PDF
    Generative models for sequential data based on directed graphs of Restricted Boltzmann Machines (RBMs) are able to accurately model high dimensional sequences as recently shown. In these models, temporal dependencies in the input are discovered by either buffering previous visible variables or by recurrent connections of the hidden variables. Here we propose a modification of these models, the Temporal Reservoir Machine (TRM). It utilizes a recurrent artificial neural network (ANN) for integrating information from the input over time. This information is then fed into a RBM at each time step. To avoid difficulties of recurrent network learning, the ANN remains untrained and hence can be thought of as a random feature extractor. Using the architecture of multi-layer RBMs (Deep Belief Networks), the TRMs can be used as a building block for complex hierarchical models. This approach unifies RBM-based approaches for sequential data modeling and the Echo State Network, a powerful approach for black-box system identification. The TRM is tested on a spoken digits task under noisy conditions, and competitive performances compared to previous models are observed

    TempNet -- Temporal Super Resolution of Radar Rainfall Products with Residual CNNs

    Full text link
    The temporal and spatial resolution of rainfall data is crucial for environmental modeling studies in which its variability in space and time is considered as a primary factor. Rainfall products from different remote sensing instruments (e.g., radar, satellite) have different space-time resolutions because of the differences in their sensing capabilities and post-processing methods. In this study, we developed a deep learning approach that augments rainfall data with increased time resolutions to complement relatively lower resolution products. We propose a neural network architecture based on Convolutional Neural Networks (CNNs) to improve the temporal resolution of radar-based rainfall products and compare the proposed model with an optical flow-based interpolation method and CNN-baseline model. The methodology presented in this study could be used for enhancing rainfall maps with better temporal resolution and imputation of missing frames in sequences of 2D rainfall maps to support hydrological and flood forecasting studies

    Hidden Markov models as priors for regularized nonnegative matrix factorization in single-channel source separation

    Get PDF
    We propose a new method to incorporate rich statistical priors, modeling temporal gain sequences in the solutions of nonnegative matrix factorization (NMF). The proposed method can be used for single-channel source separation (SCSS) applications. In NMF based SCSS, NMF is used to decompose the spectra of the observed mixed signal as a weighted linear combination of a set of trained basis vectors. In this work, the NMF decomposition weights are enforced to consider statistical and temporal prior information on the weight combination patterns that the trained basis vectors can jointly receive for each source in the observed mixed signal. The Hidden Markov Model (HMM) is used as a log-normalized gains (weights) prior model for the NMF solution. The normalization makes the prior models energy independent. HMM is used as a rich model that characterizes the statistics of sequential data. The NMF solutions for the weights are encouraged to increase the log-likelihood with the trained gain prior HMMs while reducing the NMF reconstruction error at the same time

    DJ-MC: A Reinforcement-Learning Agent for Music Playlist Recommendation

    Full text link
    In recent years, there has been growing focus on the study of automated recommender systems. Music recommendation systems serve as a prominent domain for such works, both from an academic and a commercial perspective. A fundamental aspect of music perception is that music is experienced in temporal context and in sequence. In this work we present DJ-MC, a novel reinforcement-learning framework for music recommendation that does not recommend songs individually but rather song sequences, or playlists, based on a model of preferences for both songs and song transitions. The model is learned online and is uniquely adapted for each listener. To reduce exploration time, DJ-MC exploits user feedback to initialize a model, which it subsequently updates by reinforcement. We evaluate our framework with human participants using both real song and playlist data. Our results indicate that DJ-MC's ability to recommend sequences of songs provides a significant improvement over more straightforward approaches, which do not take transitions into account.Comment: -Updated to the most recent and completed version (to be presented at AAMAS 2015) -Updated author list. in Autonomous Agents and Multiagent Systems (AAMAS) 2015, Istanbul, Turkey, May 201
    corecore