22,955 research outputs found

    Intrinsically Dynamic Network Communities

    Get PDF
    Community finding algorithms for networks have recently been extended to dynamic data. Most of these recent methods aim at exhibiting community partitions from successive graph snapshots and thereafter connecting or smoothing these partitions using clever time-dependent features and sampling techniques. These approaches are nonetheless achieving longitudinal rather than dynamic community detection. We assume that communities are fundamentally defined by the repetition of interactions among a set of nodes over time. According to this definition, analyzing the data by considering successive snapshots induces a significant loss of information: we suggest that it blurs essentially dynamic phenomena - such as communities based on repeated inter-temporal interactions, nodes switching from a community to another across time, or the possibility that a community survives while its members are being integrally replaced over a longer time period. We propose a formalism which aims at tackling this issue in the context of time-directed datasets (such as citation networks), and present several illustrations on both empirical and synthetic dynamic networks. We eventually introduce intrinsically dynamic metrics to qualify temporal community structure and emphasize their possible role as an estimator of the quality of the community detection - taking into account the fact that various empirical contexts may call for distinct `community' definitions and detection criteria.Comment: 27 pages, 11 figure

    Social media mining for identification and exploration of health-related information from pregnant women

    Get PDF
    Widespread use of social media has led to the generation of substantial amounts of information about individuals, including health-related information. Social media provides the opportunity to study health-related information about selected population groups who may be of interest for a particular study. In this paper, we explore the possibility of utilizing social media to perform targeted data collection and analysis from a particular population group -- pregnant women. We hypothesize that we can use social media to identify cohorts of pregnant women and follow them over time to analyze crucial health-related information. To identify potentially pregnant women, we employ simple rule-based searches that attempt to detect pregnancy announcements with moderate precision. To further filter out false positives and noise, we employ a supervised classifier using a small number of hand-annotated data. We then collect their posts over time to create longitudinal health timelines and attempt to divide the timelines into different pregnancy trimesters. Finally, we assess the usefulness of the timelines by performing a preliminary analysis to estimate drug intake patterns of our cohort at different trimesters. Our rule-based cohort identification technique collected 53,820 users over thirty months from Twitter. Our pregnancy announcement classification technique achieved an F-measure of 0.81 for the pregnancy class, resulting in 34,895 user timelines. Analysis of the timelines revealed that pertinent health-related information, such as drug-intake and adverse reactions can be mined from the data. Our approach to using user timelines in this fashion has produced very encouraging results and can be employed for other important tasks where cohorts, for which health-related information may not be available from other sources, are required to be followed over time to derive population-based estimates.Comment: 9 page

    Machine learning of structured and unstructured healthcare data

    Get PDF
    The widespread adoption of Electronic Health Records (EHR) systems in healthcare institutions in the United States makes machine learning based on large-scale and real-world clinical data feasible and affordable. Machine learning of healthcare data, or healthcare data analytics, has achieved numerous successes in various applications. However, there are still many challenges for machine learning of healthcare data both structured and unstructured. Longitudinal structured clinical data (e.g., lab test results, diagnoses, and medications) have an enormous variety of categories, are collected at irregularly spaced visits, and are sparsely distributed. Studies on analyzing longitudinal structured EHR data for tasks such as disease prediction and visualization are still limited. For unstructured clinical notes, existing studies mostly focus on disease prediction or cohort selection. Studies on mining clinical notes with the direct purpose to reduce costs for healthcare providers or institutions are limited. To fill in these gaps, this dissertation has three research topics.The first topic is about developing state-of-the-art predictive models to detect diabetic retinopathy using longitudinal structured EHR data. Major deep-learning-based temporal models for disease prediction are studied, implemented, and evaluated. Experimental results on a large-scale dataset show that temporal deep learning models outperform non-temporal random forests models in terms of AUPRC and recall.The second topic is about clustering temporal disease networks to visualize comorbidity progression. We propose a clustering technique to outline comorbidity progression phases as well as a new disease clustering method to simplify the visualization. Two case studies on Clostridioides difficile and stroke show the methods are effective.The third topic is clinical information extraction for medical billing. We propose a framework that consists of two methods, a rule-based and a deep-learning-based, to extract patient history information directly from clinical notes to facilitate the Evaluation and Management Services (E/M) billing. Initial results of the two prototype systems on an annotated dataset are promising and direct us for potential improvements

    Overcoming data scarcity of Twitter: using tweets as bootstrap with application to autism-related topic content analysis

    Full text link
    Notwithstanding recent work which has demonstrated the potential of using Twitter messages for content-specific data mining and analysis, the depth of such analysis is inherently limited by the scarcity of data imposed by the 140 character tweet limit. In this paper we describe a novel approach for targeted knowledge exploration which uses tweet content analysis as a preliminary step. This step is used to bootstrap more sophisticated data collection from directly related but much richer content sources. In particular we demonstrate that valuable information can be collected by following URLs included in tweets. We automatically extract content from the corresponding web pages and treating each web page as a document linked to the original tweet show how a temporal topic model based on a hierarchical Dirichlet process can be used to track the evolution of a complex topic structure of a Twitter community. Using autism-related tweets we demonstrate that our method is capable of capturing a much more meaningful picture of information exchange than user-chosen hashtags.Comment: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 201

    Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks

    Full text link
    Predicting the future health information of patients from the historical Electronic Health Records (EHR) is a core research task in the development of personalized healthcare. Patient EHR data consist of sequences of visits over time, where each visit contains multiple medical codes, including diagnosis, medication, and procedure codes. The most important challenges for this task are to model the temporality and high dimensionality of sequential EHR data and to interpret the prediction results. Existing work solves this problem by employing recurrent neural networks (RNNs) to model EHR data and utilizing simple attention mechanism to interpret the results. However, RNN-based approaches suffer from the problem that the performance of RNNs drops when the length of sequences is large, and the relationships between subsequent visits are ignored by current RNN-based approaches. To address these issues, we propose {\sf Dipole}, an end-to-end, simple and robust model for predicting patients' future health information. Dipole employs bidirectional recurrent neural networks to remember all the information of both the past visits and the future visits, and it introduces three attention mechanisms to measure the relationships of different visits for the prediction. With the attention mechanisms, Dipole can interpret the prediction results effectively. Dipole also allows us to interpret the learned medical code representations which are confirmed positively by medical experts. Experimental results on two real world EHR datasets show that the proposed Dipole can significantly improve the prediction accuracy compared with the state-of-the-art diagnosis prediction approaches and provide clinically meaningful interpretation
    • …
    corecore