3,245 research outputs found

    Training in temporal bone surgery: A review of current practices

    Get PDF
    The temporal bone consists of complex anatomy, and the presence of various vital structures in close proximity makes the surgery of temporal bone highly challenging. Such a surgery requires years of training under the direct observation of trainers. Over the course of history, different training models have been adopted by experts to help train the young surgeons in this complex procedure. Cadaveric dissections of the temporal bone remains the gold standard in training of residents as the cadavers present the actual anatomical details which the surgeons encounter while operating on patients. However, due to scarcity of available cadavers, their one-time-only usage and high cost of involved in such trainings, experts have developed newer techniques of training, including three-dimensional reconstruction models and virtual reality simulators. Most of the literature on simulation in training of residents focuses on anatomical understanding and development of the surgical technique. There has been significant improvement in these techniques over time. With the addition of haptic feedback in the newer virtual simulation models, simulation has edged closer to basic modules of temporal bone dissection. the current review article was planned to have an overview of the different techniques in detail that are currently being in used

    Virtual Reality Simulator for Training in Myringotomy with Tube Placement

    Get PDF
    Myringotomy refers to a surgical incision in the eardrum, and it is often followed by ventilation tube placement to treat middle-ear infections. The procedure is difficult to learn; hence, the objectives of this work were to develop a virtual-reality training simulator, assess its face and content validity, and implement quantitative performance metrics and assess construct validity. A commercial digital gaming engine (Unity3D) was used to implement the simulator with support for 3D visualization of digital ear models and support for major surgical tasks. A haptic arm co-located with the stereo scene was used to manipulate virtual surgical tools and to provide force feedback. A questionnaire was developed with 14 face validity questions focusing on realism and 6 content validity questions focusing on training potential. Twelve participants from the Department of Otolaryngology were recruited for the study. Responses to 12 of the 14 face validity questions were positive. One concern was with contact modeling related to tube insertion into the eardrum, and the second was with movement of the blade and forceps. The former could be resolved by using a higher resolution digital model for the eardrum to improve contact localization. The latter could be resolved by using a higher fidelity haptic device. With regard to content validity, 64% of the responses were positive, 21% were neutral, and 15% were negative. In the final phase of this work, automated performance metrics were programmed and a construct validity study was conducted with 11 participants: 4 senior Otolaryngology consultants and 7 junior Otolaryngology residents. Each participant performed 10 procedures on the simulator and metrics were automatically collected. Senior Otolaryngologists took significantly less time to completion compared to junior residents. Junior residents had 2.8 times more errors as compared to experienced surgeons. The senior surgeons also had significantly longer incision lengths, more accurate incision angles, and lower magnification keeping both the umbo and annulus in view. All metrics were able to discriminate senior Otolaryngologists from junior residents with a significance of p \u3c 0.002. The simulator has sufficient realism, training potential and performance discrimination ability to warrant a more resource intensive skills transference study

    Developing a virtual reality environment for petrous bone surgery: a state-of-the-art review

    Get PDF
    The increasing power of computers has led to the development of sophisticated systems that aim to immerse the user in a virtual environment. The benefits of this type of approach to the training of physicians and surgeons are immediately apparent. Unfortunately the implementation of “virtual reality” (VR) surgical simulators has been restricted by both cost and technical limitations. The few successful systems use standardized scenarios, often derived from typical clinical data, to allow the rehearsal of procedures. In reality we would choose a system that allows us not only to practice typical cases but also to enter our own patient data and use it to define the virtual environment. In effect we want to re-write the scenario every time we use the environment and to ensure that its behavior exactly duplicates the behavior of the real tissue. If this can be achieved then VR systems can be used not only to train surgeons but also to rehearse individual procedures where variations in anatomy or pathology present specific surgical problems. The European Union has recently funded a multinational 3-year project (IERAPSI, Integrated Environment for Rehearsal and Planning of Surgical Interventions) to produce a virtual reality system for surgical training and for rehearsing individual procedures. Building the IERAPSI system will bring together a wide range of experts and combine the latest technologies to produce a true, patient specific virtual reality surgical simulator for petrous/temporal bone procedures. This article presents a review of the “state of the art” technologies currently available to construct a system of this type and an overview of the functionality and specifications such a system requires

    HAPTIC AND VISUAL SIMULATION OF BONE DISSECTION

    Get PDF
    Marco AgusIn bone dissection virtual simulation, force restitution represents the key to realistically mimicking a patient– specific operating environment. The force is rendered using haptic devices controlled by parametrized mathematical models that represent the bone–burr contact. This dissertation presents and discusses a haptic simulation of a bone cutting burr, that it is being developed as a component of a training system for temporal bone surgery. A physically based model was used to describe the burr– bone interaction, including haptic forces evaluation, bone erosion process and resulting debris. The model was experimentally validated and calibrated by employing a custom experimental set–up consisting of a force–controlled robot arm holding a high–speed rotating tool and a contact force measuring apparatus. Psychophysical testing was also carried out to assess individual reaction to the haptic environment. The results suggest that the simulator is capable of rendering the basic material differences required for bone burring tasks. The current implementation, directly operating on a voxel discretization of patientspecific 3D CT and MR imaging data, is efficient enough to provide real–time haptic and visual feedback on a low–end multi–processing PC platform.

    A comprehensive evaluation of work and simulation based assessment in otolaryngology training

    Get PDF
    Introduction: The otolaryngology curriculum requires trainees to show evidence of operative competence before completion of training. The General Medical Council recommended that structured assessment be used throughout training to monitor and guide trainee progression. Despite the reduction in operative exposure and the variation in trainee performance, a ‘one size fits all’ approach continues to be applied. The number of procedures performed remains the main indicator of competence. Objectives: To analyse the utilisation, reliability and validity of workplace-based assessments in otolaryngology training. To identify, develop and validate a series of simulation platforms suitable for incorporation into the otolaryngology curriculum. To develop a model of interchangeable workplace- and simulation-based assessment that reflects trainee’s trajectory, audit the delivery of training and set milestones for modular learning. Methods: A detailed review of the literature identified a list of procedure-specific assessment tools as well as simulators suitable to be used as assessment platforms. A simulation-integrated training programme was piloted and models were tested for feasibility, face, content and construct validity before being incorporated into the North London training programme. The outcomes of workplace- and simulation-based assessments of all core and specialty otolaryngology trainees were collated and analysed. Results: The outcomes of 6535 workplace-based assessments were analysed. The strengths and weaknesses of 4 different assessment tools are highlighted. Validated platforms utilising cadavers, animal tissue, synthetic material and virtual reality simulators were incorporated into the curriculum. 60 trainees and 40 consultants participated in the process and found it of great educational value. Conclusion: Assessment with structured feedback is integral to surgical training. Assessment using validated simulation modules can complement that undertaken in the workplace. The outcomes of structures assessments can be used to monitor and guide trainee trajectory at individual and regional level. The derived learning curves can shape and audit future otolaryngological training.Open Acces

    How to Build a Patient-Specific Hybrid Simulator for Orthopaedic Open Surgery: Benefits and Limits of Mixed-Reality Using the Microsoft HoloLens

    Get PDF
    Orthopaedic simulators are popular in innovative surgical training programs, where trainees gain procedural experience in a safe and controlled environment. Recent studies suggest that an ideal simulator should combine haptic, visual, and audio technology to create an immersive training environment. This article explores the potentialities of mixed-reality using the HoloLens to develop a hybrid training system for orthopaedic open surgery. Hip arthroplasty, one of the most common orthopaedic procedures, was chosen as a benchmark to evaluate the proposed system. Patient-specific anatomical 3D models were extracted from a patient computed tomography to implement the virtual content and to fabricate the physical components of the simulator. Rapid prototyping was used to create synthetic bones. The Vuforia SDK was utilized to register virtual and physical contents. The Unity3D game engine was employed to develop the software allowing interactions with the virtual content using head movements, gestures, and voice commands. Quantitative tests were performed to estimate the accuracy of the system by evaluating the perceived position of augmented reality targets. Mean and maximum errors matched the requirements of the target application. Qualitative tests were carried out to evaluate workload and usability of the HoloLens for our orthopaedic simulator, considering visual and audio perception and interaction and ergonomics issues. The perceived overall workload was low, and the self-assessed performance was considered satisfactory. Visual and audio perception and gesture and voice interactions obtained a positive feedback. Postural discomfort and visual fatigue obtained a nonnegative evaluation for a simulation session of 40 minutes. These results encourage using mixed-reality to implement a hybrid simulator for orthopaedic open surgery. An optimal design of the simulation tasks and equipment setup is required to minimize the user discomfort. Future works will include Face Validity, Content Validity, and Construct Validity to complete the assessment of the hip arthroplasty simulator

    Real-time haptic modeling and simulation for prosthetic insertion

    Get PDF
    In this work a surgical simulator is produced which enables a training otologist to conduct a virtual, real-time prosthetic insertion. The simulator provides the Ear, Nose and Throat surgeon with real-time visual and haptic responses during virtual cochlear implantation into a 3D model of the human Scala Tympani (ST). The parametric model is derived from measured data as published in the literature and accounts for human morphological variance, such as differences in cochlear shape, enabling patient-specific pre- operative assessment. Haptic modeling techniques use real physical data and insertion force measurements, to develop a force model which mimics the physical behavior of an implant as it collides with the ST walls during an insertion. Output force profiles are acquired from the insertion studies conducted in the work, to validate the haptic model. The simulator provides the user with real-time, quantitative insertion force information and associated electrode position as user inserts the virtual implant into the ST model. The information provided by this study may also be of use to implant manufacturers for design enhancements as well as for training specialists in optimal force administration, using the simulator. The paper reports on the methods for anatomical modeling and haptic algorithm development, with focus on simulator design, development, optimization and validation. The techniques may be transferrable to other medical applications that involve prosthetic device insertions where user vision is obstructed

    Towards a psychophysical evaluation of a surgical simulator for bone-burring

    Get PDF
    The CRS4 experimental bone-burr simulator implements visual and haptic effects through the incorporation of a physics-based contact model and patient-specific data. Psychophysical tests demonstrate that, despite its simplified model and its inherent technological constraints, the simulator can articulate material differences, and that its users can learn to associate virtual bone with real bone material. Tests addressed both surface probing and interior drilling task. We also explore a haptic contrast sensitivity function based on the model s two main parameters: an elastic constant and an erosion factor. Both parameters manifest power-law-like sensitivity with respective exponents of around two and three. Further tests may reveal how well simulator users perceive fine differences in bone material, like those encountered while drilling through real volume boundaries.139-14
    corecore