40 research outputs found

    Into-TTS : Intonation Template based Prosody Control System

    Full text link
    Intonations take an important role in delivering the intention of the speaker. However, current end-to-end TTS systems often fail to model proper intonations. To alleviate this problem, we propose a novel, intuitive method to synthesize speech in different intonations using predefined intonation templates. Prior to the acoustic model training, speech data are automatically grouped into intonation templates by k-means clustering, according to their sentence-final F0 contour. Two proposed modules are added to the end-to-end TTS framework: intonation classifier and intonation encoder. The intonation classifier recommends a suitable intonation template to the given text. The intonation encoder, attached to the text encoder output, synthesizes speech abiding the requested intonation template. Main contributions of our paper are: (a) an easy-to-use intonation control system covering a wide range of users; (b) better performance in wrapping speech in a requested intonation with improved pitch distance and MOS; and (c) feasibility to future integration between TTS and NLP, TTS being able to utilize contextual information. Audio samples are available at https://srtts.github.io/IntoTTS.Comment: Submitted to INTERSPEECH 202

    Prosody generation for text-to-speech synthesis

    Get PDF
    The absence of convincing intonation makes current parametric speech synthesis systems sound dull and lifeless, even when trained on expressive speech data. Typically, these systems use regression techniques to predict the fundamental frequency (F0) frame-by-frame. This approach leads to overlysmooth pitch contours and fails to construct an appropriate prosodic structure across the full utterance. In order to capture and reproduce larger-scale pitch patterns, we propose a template-based approach for automatic F0 generation, where per-syllable pitch-contour templates (from a small, automatically learned set) are predicted by a recurrent neural network (RNN). The use of syllable templates mitigates the over-smoothing problem and is able to reproduce pitch patterns observed in the data. The use of an RNN, paired with connectionist temporal classification (CTC), enables the prediction of structure in the pitch contour spanning the entire utterance. This novel F0 prediction system is used alongside separate LSTMs for predicting phone durations and the other acoustic features, to construct a complete text-to-speech system. Later, we investigate the benefits of including long-range dependencies in duration prediction at frame-level using uni-directional recurrent neural networks. Since prosody is a supra-segmental property, we consider an alternate approach to intonation generation which exploits long-term dependencies of F0 by effective modelling of linguistic features using recurrent neural networks. For this purpose, we propose a hierarchical encoder-decoder and multi-resolution parallel encoder where the encoder takes word and higher level linguistic features at the input and upsamples them to phone-level through a series of hidden layers and is integrated into a Hybrid system which is then submitted to Blizzard challenge workshop. We then highlight some of the issues in current approaches and a plan for future directions of investigation is outlined along with on-going work

    A dynamic deep learning approach for intonation modeling

    Get PDF
    Intonation plays a crucial role in making synthetic speech sound more natural. However, intonation modeling largely remains an open question. In my thesis, the interpolated F0 is parameterized dynamically by means of sign values, encoding the direction of pitch change, and corresponding quantized magnitude values, encoding the amount of pitch change in such direction. The sign and magnitude values are used for the training of a dedicated neural network. The proposed methodology is evaluated and compared to a state-of-the-art DNN-based TTS system. To this end, a segmental synthesizer was implemented to normalize the effect of the spectrum. The synthesizer uses the F0 and linguistic features to predict the spectrum, aperiodicity, and voicing information. The proposed methodology performs as well as the reference system, and we observe a trend for native speakers to prefer the proposed intonation model

    Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

    Get PDF
    This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.Comment: Published in Journal of AI Research (JAIR), volume 61, pp 75-170. 118 pages, 8 figures, 1 tabl

    A Review of Deep Learning Techniques for Speech Processing

    Full text link
    The field of speech processing has undergone a transformative shift with the advent of deep learning. The use of multiple processing layers has enabled the creation of models capable of extracting intricate features from speech data. This development has paved the way for unparalleled advancements in speech recognition, text-to-speech synthesis, automatic speech recognition, and emotion recognition, propelling the performance of these tasks to unprecedented heights. The power of deep learning techniques has opened up new avenues for research and innovation in the field of speech processing, with far-reaching implications for a range of industries and applications. This review paper provides a comprehensive overview of the key deep learning models and their applications in speech-processing tasks. We begin by tracing the evolution of speech processing research, from early approaches, such as MFCC and HMM, to more recent advances in deep learning architectures, such as CNNs, RNNs, transformers, conformers, and diffusion models. We categorize the approaches and compare their strengths and weaknesses for solving speech-processing tasks. Furthermore, we extensively cover various speech-processing tasks, datasets, and benchmarks used in the literature and describe how different deep-learning networks have been utilized to tackle these tasks. Additionally, we discuss the challenges and future directions of deep learning in speech processing, including the need for more parameter-efficient, interpretable models and the potential of deep learning for multimodal speech processing. By examining the field's evolution, comparing and contrasting different approaches, and highlighting future directions and challenges, we hope to inspire further research in this exciting and rapidly advancing field

    Synthesising prosody with insufficient context

    Get PDF
    Prosody is a key component in human spoken communication, signalling emotion, attitude, information structure, intention, and other communicative functions through perceived variation in intonation, loudness, timing, and voice quality. However, the prosody in text-to-speech (TTS) systems is often monotonous and adds no additional meaning to the text. Synthesising prosody is difficult for several reasons: I focus on three challenges. First, prosody is embedded in the speech signal, making it hard to model with machine learning. Second, there is no clear orthography for prosody, meaning it is underspecified in the input text and making it difficult to directly control. Third, and most importantly, prosody is determined by the context of a speech act, which TTS systems do not, and will never, have complete access to. Without the context, we cannot say if prosody is appropriate or inappropriate. Context is wide ranging, but state-of-the-art TTS acoustic models only have access to phonetic information and limited structural information. Unfortunately, most context is either difficult, expensive, or impos- sible to collect. Thus, fully specified prosodic context will never exist. Given there is insufficient context, prosody synthesis is a one-to-many generative task: it necessitates the ability to produce multiple renditions. To provide this ability, I propose methods for prosody control in TTS, using either explicit prosody features, such as F0 and duration, or learnt prosody representations disentangled from the acoustics. I demonstrate that without control of the prosodic variability in speech, TTS will produce average prosody—i.e. flat and monotonous prosody. This thesis explores different options for operating these control mechanisms. Random sampling of a learnt distribution of prosody produces more varied and realistic prosody. Alternatively, a human-in-the-loop can operate the control mechanism—using their intuition to choose appropriate prosody. To improve the effectiveness of human-driven control, I design two novel approaches to make control mechanisms more human interpretable. Finally, it is important to take advantage of additional context as it becomes available. I present a novel framework that can incorporate arbitrary additional context, and demonstrate my state-of- the-art context-aware model of prosody using a pre-trained and fine-tuned language model. This thesis demonstrates empirically that appropriate prosody can be synthesised with insufficient context by accounting for unexplained prosodic variation

    Suprasegmental representations for the modeling of fundamental frequency in statistical parametric speech synthesis

    Get PDF
    Statistical parametric speech synthesis (SPSS) has seen improvements over recent years, especially in terms of intelligibility. Synthetic speech is often clear and understandable, but it can also be bland and monotonous. Proper generation of natural speech prosody is still a largely unsolved problem. This is relevant especially in the context of expressive audiobook speech synthesis, where speech is expected to be fluid and captivating. In general, prosody can be seen as a layer that is superimposed on the segmental (phone) sequence. Listeners can perceive the same melody or rhythm in different utterances, and the same segmental sequence can be uttered with a different prosodic layer to convey a different message. For this reason, prosody is commonly accepted to be inherently suprasegmental. It is governed by longer units within the utterance (e.g. syllables, words, phrases) and beyond the utterance (e.g. discourse). However, common techniques for the modeling of speech prosody - and speech in general - operate mainly on very short intervals, either at the state or frame level, in both hidden Markov model (HMM) and deep neural network (DNN) based speech synthesis. This thesis presents contributions supporting the claim that stronger representations of suprasegmental variation are essential for the natural generation of fundamental frequency for statistical parametric speech synthesis. We conceptualize the problem by dividing it into three sub-problems: (1) representations of acoustic signals, (2) representations of linguistic contexts, and (3) the mapping of one representation to another. The contributions of this thesis provide novel methods and insights relating to these three sub-problems. In terms of sub-problem 1, we propose a multi-level representation of f0 using the continuous wavelet transform and the discrete cosine transform, as well as a wavelet-based decomposition strategy that is linguistically and perceptually motivated. In terms of sub-problem 2, we investigate additional linguistic features such as text-derived word embeddings and syllable bag-of-phones and we propose a novel method for learning word vector representations based on acoustic counts. Finally, considering sub-problem 3, insights are given regarding hierarchical models such as parallel and cascaded deep neural networks
    corecore